Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 100–106 | Cite as

Elastic Modulus Estimation for Copper Syntactic Foams Reinforced with Iron Hollow Spheres of Different Wall Thicknesses

  • L. Pérez
  • M. Villalobos
  • C. Órdenes
  • R. A. L. Drew
  • C. Ruiz-Aguilar
  • I. Alfonso
Article
  • 47 Downloads

Abstract

The present study estimates the effect on Young’s modulus of the percentage and thickness of iron hollow spheres reinforcing copper syntactic foams. The resulting materials were modeled by inserting hollow spheres in a random arrangement, using a combination of Discrete Element Method (DEM) for generating the sphere location coordinates and Finite Element Analysis (FEA). Estimations for syntactic foams were compared to those obtained for conventional copper foams with the same porosity. Results showed that the elastic modulus of both syntactic and conventional foams drops significantly as the percentage of spheres or porosity increases. Furthermore, the increase in the wall thickness of the iron hollow spheres leads to significant rises in the Young’s modulus. Depending on the desired mechanical properties, the outcomes presented in this work could be used for selecting the kind of foam (syntactic or conventional) and predesign some characteristics such as porosity or thickness of the spheres or pores.

Keywords

copper DEM FEA foam iron syntactic 

Notes

Acknowledgments

L. Pérez acknowledges the financial support from the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, CONICYT. I. Alfonso would like to acknowledge the financial support from UNAM PAPIIT IN117316. R. Drew acknowledges the financial support from PREI DGAPA UNAM.

References

  1. 1.
    J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRefGoogle Scholar
  2. 2.
    M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: A Design Guide, 1st ed., Butterworth-Heinemann, Ed., Woburn, 2000, p 1–447Google Scholar
  3. 3.
    A.E. Belhadj, A. Gavrus, F. Bernard, and M. Azzaz, Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foams, J. Mater. Eng. Perform., 2015, 24, p 4140–4155CrossRefGoogle Scholar
  4. 4.
    M. Yu, P. Zhu, and Y. Ma, Effects of Particle Clustering on the Tensile Properties and Failure Mechanisms of Hollow Spheres Filled Syntactic Foams: A Numerical Investigation by Microstructure Based Modeling, Mater. Des., 2013, 47, p 80–89CrossRefGoogle Scholar
  5. 5.
    W.S. Sanders and L.J. Gibson, Mechanics of Hollow Sphere Foam, Mater. Sci. Eng. A, 2003, 34, p 770–785Google Scholar
  6. 6.
    I.N. Orbulov and J. Ginsztler, Compressive Characteristics of Metal Matrix Syntactic Foams, Compos. Part A, 2012, 43, p 553–561CrossRefGoogle Scholar
  7. 7.
    A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I.N. Orbulov, Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres, Mater. Des., 2015, 83, p 230–237CrossRefGoogle Scholar
  8. 8.
    X. Xue, L. Wang, M. Wang, W. Lü, and D. Zhang, Manufacturing, Compressive Behaviour and Elastic Modulus of Ti matrix Syntactic Foam Fabricated by Powder Metallurgy, Trans. Nonferr. Met. Soc. China, 2012, 22, p s188–s192CrossRefGoogle Scholar
  9. 9.
    X.F. Tao, L.P. Zhang, and Y.Y. Zhao, Al Matrix Syntactic Foam Fabricated with Bimodal Ceramic Microspheres, Mater. Des., 2009, 30, p 2732–2736CrossRefGoogle Scholar
  10. 10.
    F.V. Antunes, J.A.M. Ferreira, and C. Capela, Numerical Modelling of the Young’s Modulus of Syntactic Foams, Finite Elem. Anal. Des., 2011, 47, p 78–84CrossRefGoogle Scholar
  11. 11.
    P.K. Rohatgi, N. Gupta, B.F. Schultz, and D.D. Luong, The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams, JOM, 2011, 63, p 36–42CrossRefGoogle Scholar
  12. 12.
    L.F. Nielsen, Elasticity and Damping of Porous Materials and Impregnated Materials, J. Am. Ceram. Soc., 1984, 1984(67), p 93–98CrossRefGoogle Scholar
  13. 13.
    H.X. Zhu, J.F. Knott, and N.J. Mills, Analysis of the Elastic Properties of Open-Cell Foams with Tetrakaidecahedral Cells, J. Mech. Phys. Solids, 1997, 45, p 319–343CrossRefGoogle Scholar
  14. 14.
    A. Hasan, An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams, Adv. Mater. Sci. Eng., 2010, 2010, p 1–12CrossRefGoogle Scholar
  15. 15.
    D. Meric and H. Gedikli, Energy Absorption Behavior of Tailor-Welded Tapered Tubes Under Axial Impact Loading Using Coupled FEM/SPH Method, Thin-Walled Struct., 2016, 104, p 17–33CrossRefGoogle Scholar
  16. 16.
    M. Kırca, A. Gul, E. Ekinci, F. Yardım, and A. Mugan, Computational Modeling of Micro-cellular Carbon Foams, Finite Elem. Anal. Des., 2007, 44, p 45–52CrossRefGoogle Scholar
  17. 17.
    J.H. Cadena, I. Alfonso, J.H. Ramírez, V. Rodríguez-Iglesias, I.A. Figueroa, and C. Aguilar, Improvement of FEA Estimations for Compression Behavior of Mg Foams Based on Experimental Observations, Comput. Mater. Sci., 2014, 91, p 359–363CrossRefGoogle Scholar
  18. 18.
    S. Kari, H. Berger, U. Gabbert, R. Guinovart-Dıaz, J. Bravo-Castillero, and R. Rodrıguez-Ramos, Evaluation of Influence of Interphase Material Parameters on Effective Material Properties of Three Phase Composites, Compos. Sci. Technol., 2008, 68, p 684–691CrossRefGoogle Scholar
  19. 19.
    L. Pérez, S. Lascano, C. Aguilar, D. Estay, U. Messner, I.A. Figueroa, and I. Alfonso, DEM-FEA Estimation of Pores Arrangement Effect on the Compressive Young’s Modulus for Mg Foams, Comput. Mater. Sci., 2015, 110, p 281–286CrossRefGoogle Scholar
  20. 20.
    R. Dobry and T.T. Ng, Discrete Modeling of Stress-Strain Behavior of Media at Small and Large Strain, Eng. Comput., 1992, 9, p 129–143CrossRefGoogle Scholar
  21. 21.
    A. Bálint and A. Szlancsik, Mechanical Properties of Iron Hollow Sphere Reinforced Metal Matrix Syntactic Foams, Mater. Sci. Forum, 2015, 812, p 3–8CrossRefGoogle Scholar
  22. 22.
    H. Fredriksson, K. Hansson, and A. Olsson, On the Mechanism of Liquid Copper Penetration into Iron Grain Boundaries, Scand. J. Metall., 2001, 30, p 41–50CrossRefGoogle Scholar
  23. 23.
    C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, Models, Algorithms and Validation for Opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 2012, 12, p 140–152CrossRefGoogle Scholar
  24. 24.
    S.K. Sebsadji and K. Chouicha, Determining Periodic Representative Volumes of Concrete Mixtures Based on the Fractal Analysis, Int. J. Solids Struct., 2012, 49, p 2941–2950CrossRefGoogle Scholar
  25. 25.
    L. Pérez, S. Lascano, C. Aguilar, D. Domancic, and I. Alfonso, Simplified Fractal FEA Model for the Estimation of the Young’s Modulus of Ti Foams Obtained by Powder Metallurgy, Mater. Des., 2015, 83, p 276–283CrossRefGoogle Scholar
  26. 26.
    R.K. Everett and R.J. Arsenault, Ed., Metal Matrix Composites: Processing and Interface, Academic Press, New York, 1991Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Department of Mechanical, Industrial and Aerospace EngineeringConcordia UniversityMontrealCanada
  3. 3.Instituto de Investigaciones en Materiales, Unidad MoreliaUniversidad Nacional Autónoma de MéxicoMoreliaMéxico

Personalised recommendations