Advertisement

Fatigue Crack Propagation of Nickel-Based Superalloy: Experiments and Simulations with Extended Finite Element Method

  • Hong Zhang
  • Peidong Li
  • Qingyuan WangEmail author
  • Yongjie LiuEmail author
Article
  • 48 Downloads

Abstract

Numerical simulation based on extended finite element method was employed to investigate the fatigue crack propagation of nickel-based superalloy at room temperature. Experimental tests on compact tension specimens have performed to obtain fatigue crack propagation parameters in Paris region. The extended finite element method has presented a new approach to solve the stress intensity factors and can effectively predict crack propagation without re-meshing at crack tip. The simulation results are in good accordance with experimental data in real 3D cases.

Keywords

extended finite element method fatigue crack propagation nickel-based superalloy stress intensity factor 

Notes

Acknowledgments

This work was supported by the National Natural Science Research Foundation of China (Nos. 11327801, 11502151, 11572057), the Program for Changjiang Scholars and Innovative Research Team (No. IRT14R37), and Key Science and Technology Support Program of Sichuan Province (No. 2015JPT0001).

References

  1. 1.
    N. Makuch and M. Kulka, Fracture Toughness of Hard Ceramic Phases Produced on Nimonic 80A-Alloy by Gas Boriding, Ceram. Int., 2016, 42((2, Part B)), p 3275–3289CrossRefGoogle Scholar
  2. 2.
    K. Tokaji, S. Takafuji, K. Ohya, Y. Kato, and K. Mori, Fatigue Behaviour of Beta Ti-22V-4Al Alloy Subjected to Surface-Microstructural Modification, Journal of Materials Science, 2003, 38(6), p 1153–1159CrossRefGoogle Scholar
  3. 3.
    K.-B. Shiozawa, Y. Tohda, and S.M. Sun, Crack Initiation and Small Fatigue Crack Growth Behaviour of Squeeze-Cast Al-Si Aluminium Alloys, Fatigue Fract. Eng. Mater. Struct., 1997, 20(2), p 237–247CrossRefGoogle Scholar
  4. 4.
    S.M. Beden, S. Abdullah, and A.K. Ariffin, Review of Fatigue Crack Propagation Models for Metallic Components, Eur. J. Sci. Res., 2009, 28(3), p 364–397Google Scholar
  5. 5.
    P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85(4), p 528–533CrossRefGoogle Scholar
  6. 6.
    Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987Google Scholar
  7. 7.
    T.L. Anderso, Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, 2005CrossRefGoogle Scholar
  8. 8.
    J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35(2), p 379–386CrossRefGoogle Scholar
  9. 9.
    C.F. Shih and R.J. Asaro, Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding, J. Appl. Mech., 1988, 55(2), p 299–316CrossRefGoogle Scholar
  10. 10.
    S. Liu, C. Liu, Y. Hu, S. Gao, Y. Wang, and H. Zhang, Fatigue Life Assessment of Centrifugal Compressor Impeller Based on FEA, Eng. Fail. Anal., 2016, 60, p 383–390CrossRefGoogle Scholar
  11. 11.
    V. Chaves, C. Madrigal, and A. Navarro, Fatigue Limit Predictions at Stress Concentrations Using FEA and Microstructural Fracture Mechanics, Theor. Appl. Fract. Mech., 2017, 87, p 11–20CrossRefGoogle Scholar
  12. 12.
    P. Zerres and M. Vormwald, Finite Element Based Simulation of Fatigue Crack Growth with a Focus on Elastic-Plastic Material Behavior, Comput. Mater. Sci., 2012, 57, p 73–79CrossRefGoogle Scholar
  13. 13.
    H. Pathak, A. Singh, and I.V. Singh, Fatigue Crack Growth Simulations of 3-D Problems Using XFEM, Int. J. Mech. Sci., 2013, 76, p 112–131CrossRefGoogle Scholar
  14. 14.
    T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Meth. Eng., 1999, 45(5), p 601–620CrossRefGoogle Scholar
  15. 15.
    M.L. Benzeggagh and M. Kenane, Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Sci. Technol., 1996, 56(4), p 439–449CrossRefGoogle Scholar
  16. 16.
    B. Wang, H. De Backer, and A. Chen, An XFEM Based Uncertainty Study on Crack Growth in Welded Joints with Defects, Theor. Appl. Fract. Mech., 2016, 86, Part B, p 125–142CrossRefGoogle Scholar
  17. 17.
    S. Bhattacharya and K. Sharma, Fatigue Crack Growth Simulations of FGM Plate under Cyclic Thermal Load by XFEM, Proc. Eng., 2014, 86(Supplement C), p 727–731CrossRefGoogle Scholar
  18. 18.
    H. Pathak, A. Singh, and I.V. Singh, Fatigue Crack Growth Simulations of 3-D Problems Using XFEM, Int. J. Mech. Sci., 2013, 76(11), p 112–131CrossRefGoogle Scholar
  19. 19.
    P.A. Wawrzynek and A.R. Ingraffea, Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach, Theor. Appl. Fract. Mech., 1987, 8(2), p 137–150.CrossRefGoogle Scholar
  20. 20.
    H. Zhang, C. Huang, Z. Guan, J. Li, Y. Liu, R. Chen, and Q. Wang, Effects of the Electron Beam Welding Process on the Microstructure, Tensile, Fatigue and Fracture Properties of Nickel Alloy Nimonic 80A, J. Mater. Eng. Perform., 2018, 27(1), p 89–98CrossRefGoogle Scholar
  21. 21.
    ASTM, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM E647-2013a, 2013Google Scholar
  22. 22.
    S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing, New York, 2008CrossRefGoogle Scholar
  23. 23.
    P. Elisa, Virtual Crack Closure Technique and Finite Element Method for Predicting the Delamination Growth Initiation in Composite Structures, Advances in Composite Materials-Analysis of Natural and Man-Made Materialsed, InTech, 2011CrossRefGoogle Scholar
  24. 24.
    A. Bergara, J.I. Dorado, A. Martin-Meizoso, and J.M. Martínez-Esnaola, Fatigue Crack Propagation in Complex Stress Fields: Experiments and Numerical Simulations Using the Extended Finite Element Method (XFEM), Int. J. Fatigue, 2017, 103(Supplement C), p 112–121CrossRefGoogle Scholar
  25. 25.
    V. Tvergaard, On Fatigue Crack Growth in Ductile Materials by Crack–Tip Blunting, J. Mech. Phys. Solids, 2004, 52(9), p 2149–2166CrossRefGoogle Scholar
  26. 26.
    K.A. Rozman, J.J. Kruzic, and J.A. Hawk, Fatigue Crack Growth Behavior of Nickel-Base Superalloy Haynes 282 at 550–750 °C, J. Mater. Eng. Perform., 2015, 24(8), p 2841–2846CrossRefGoogle Scholar
  27. 27.
    F. Farukh, L. Zhao, R. Jiang, P. Reed, D. Proprentner, and B. Shollock, Fatigue Crack Growth in a Nickel-Based Superalloy at Elevated Temperature—Experimental Studies, Viscoplasticity Modelling and XFEM Predictions, Mechanics of Advanced Materials & Modern Processes, 2015, 1(1), p 2CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Failure Mechanics and Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province, College of Architecture and EnvironmentSichuan UniversityChengduChina
  2. 2.Key Laboratory of Deep Underground Science and Engineering, Ministry of EducationSichuan UniversityChengduChina
  3. 3.State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
  4. 4.School of Architecture and Civil EngineeringChengdu UniversityChengduChina

Personalised recommendations