Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 526–534 | Cite as

Graphene-Reinforced Aluminum Hybrid Foam: Response to High Strain Rate Deformation

  • Sourav DasEmail author
  • Sanjeev Khanna
  • D. P. Mondal
Article
  • 40 Downloads

Abstract

The compressive deformation behavior of 0.5 wt.% graphene-reinforced aluminum-SiC hybrid composite foam under dynamic loading over strain rates of 500-2760 s−1 was studied using a split-Hopkinson pressure bar unit. It was found that under the dynamic loading, the plateau stress and energy absorption of aluminum hybrid foam increased with strain rate. On the other hand, the densification strain did vary only marginally with strain rate. Further, it was noted that the foam with lower relative density was more sensitive to strain rate. The lighter foams exhibited higher plateau stress and energy absorption as compared to the heavier ones. The plateau stress and energy absorption were enhanced marginally with relative density. Present results showed that the plateau stress is sensitive to strain rate and less sensitive to relative density. The coefficient, in scaling relation to predict compressive plateau stress, was in the range of 0.2-0.5 for strain rates 500-2760 s−1.

Keywords

dynamic compression energy absorption graphene-reinforced aluminum-SiC foam split-Hopkinson pressure bar strain rate sensitivity 

Notes

Acknowledgments

The authors thank the Director Council of Scientific and Industrial Research—Advanced Materials and Processes Research Institute, Bhopal, India, for providing samples of graphene-dispersed aluminum-SiC hybrid foam for high-strain-rate tests.

References

  1. 1.
    L.J. Gibson and M.F. Ashby, Cellular Solids, 2nd ed., Cambridge University Press, New York, 1997CrossRefGoogle Scholar
  2. 2.
    W. Jiejun, L. Chenggong, W. Dianbin, and G. Manchang, Damping and Sound Absorption Properties of Particle Reinforced Al Matrix Composite Foams, Compos. Sci. Technol., 2003, 63(3–4), p 569–574CrossRefGoogle Scholar
  3. 3.
    A. Byakova, Y. Bezim'yanny, S. Gnyloskurenko, and T. Nakamura, Fabrication Method for Closed-Cell Aluminum Foam with Improved Sound Absorption Ability, Procedia Mater. Sci., 2014, 4, p 9–14CrossRefGoogle Scholar
  4. 4.
    R.P. Merrett, G.S. Langdon, and M.D. Theobald, The Blast and Impact Loading of Aluminum Foam, Mater. Des., 2013, 44, p 311–319CrossRefGoogle Scholar
  5. 5.
    S. Wang, Y. Ding, C. Wang, Z. Zheng, and Yu Jilin, Dynamic Material Parameters of Closed-Cell Foams Under High-Velocity Impact, Int. J. Impact Eng., 2017, 99, p 111–121CrossRefGoogle Scholar
  6. 6.
    S. Ramachandra, P. Sudheer Kumar, and U. Ramamurthy, Impact Energy Absorption, Scr. Mater., 2003, 49(8), p 741–745CrossRefGoogle Scholar
  7. 7.
    L. Jing, Z. Wang, and L. Zhao, The Dynamic Response of Sandwich Panels with Cellular Metal Cores to Localized Impulsive Loading, Compos. B Eng., 2016, 94, p 52–63CrossRefGoogle Scholar
  8. 8.
    Z. Xia, X. Wang, H. Fan, Y. Li, and F. Jin, Blast Resistance of Metallic Tube-Core Sandwich Panels, Int. J. Impact Eng., 2016, 97, p 10–28CrossRefGoogle Scholar
  9. 9.
    E. Lamanna, N. Gupta, P. Cappa, O.M. Strbik, and K. Cho, Evaluation of the Dynamic Properties of an Aluminum Syntactic Foam Core Sandwich, J. Alloy. Compd., 2017, 695(25), p 2987–2994CrossRefGoogle Scholar
  10. 10.
    A. Alhusseny, A. Turan, and A. Nasser, Rotating Metal Foam Structures for Performance Enhancement of Double-Pipe Heat Exchangers, Int. J. Heat Mass Transf., 2017, 105, p 124–139CrossRefGoogle Scholar
  11. 11.
    G.B. Abadi and K.C. Kim, Experimental Heat Transfer and Pressure Drop in a Metal-Foam-Filled Tube Heat Exchanger, Exp. Therm. Fluid Sci., 2017, 82, p 42–49CrossRefGoogle Scholar
  12. 12.
    J. von Rickenbach, F. Lucci, P.D. Eggenschwiler, and D. Poulikakos, Pore-Scale Modeling of Cold-Start Emissions in Foam-Based Catalytic Reactors, Chem. Eng. Sci., 2015, 138(22), p 446–456CrossRefGoogle Scholar
  13. 13.
    J. von Rickenbach, F. Lucci, C. Narayanan, P.D. Eggenschwiler, and D. Poulikakos, Multi-scale Modeling of Mass Transfer Limited Heterogeneous Reactions in Open Cell Foams, Int. J. Heat Mass Transf., 2014, 75, p 337–346CrossRefGoogle Scholar
  14. 14.
    F. García-Moreno, Commercial Applications of Metal Foams: Their Properties and Production, Materials, 2016, 9(2), p 85–112CrossRefGoogle Scholar
  15. 15.
    L.-P. Lefebvre, J. Banhart, and D.C. Dunand, Porous Metals and Metallic Foams: Current Status and Recent Developments, Adv. Eng. Mater., 2008, 10(9), p 775–787CrossRefGoogle Scholar
  16. 16.
    F. Han, Z. Zhu, and J. Ga, Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum, Metall. Trans. A, 1998, 29A, p 2497–2502CrossRefGoogle Scholar
  17. 17.
    W. Andrews, W. Sanders, and L.J. Gibson, Compressive and Tensile Behavior of Aluminum Foams, Mater. Sci. Eng. A, 1999, 270, p 113–124CrossRefGoogle Scholar
  18. 18.
    X. Zhang and G. Cheng, A Comparative Study of Energy Absorption Characteristics of Foam-Filled and Multi-cell Square Columns, Int. J. Impact Eng., 2007, 34, p 1739–1752CrossRefGoogle Scholar
  19. 19.
    D. Karagiozova, D.W. Shu, G. Lu, and X. Xiang, On the Energy Absorption of Tube Reinforced Foam Materials Under Quasi-Static and Dynamic Compression, Int. J. Mech. Sci., 2016, 105, p 102–116CrossRefGoogle Scholar
  20. 20.
    J. Wang, Z. Li, G. Fan, H. Pang, Z. Chen, and D. Zhang, Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites, Scr. Mater., 2012, 66, p 594–597CrossRefGoogle Scholar
  21. 21.
    I. Duarte, E. Ventura, S. Olhero, and J.M.F. Ferreira, A Novel Approach to Prepare Aluminum Alloy Foams Reinforced by Carbon Nano Tubes, Mater. Lett., 2015, 160, p 162–166CrossRefGoogle Scholar
  22. 22.
    Y. An, S. Yang, E. Zhao, Z. Wang, and W. Hongyan, Fabrication of Aluminum Foam Reinforced by Graphene Nanoflakes, Mater. Lett., 2018, 212, p 4–7CrossRefGoogle Scholar
  23. 23.
    Y. An, S. Yang, W. Hongyan, E. Zhao, and Z. Wang, Investigating the Internal Structure and Mechanical Properties of Graphene Nanoflakes Enhanced Aluminum Foam, Mater. Des., 2017, 134, p 44–53CrossRefGoogle Scholar
  24. 24.
    V.S. Deshpande and N.A. Fleck, High Strain Rate Compressive Behavior of Aluminum Alloy Foams, J. Int. J. Impact Eng., 2000, 24, p 277–298CrossRefGoogle Scholar
  25. 25.
    T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, and K. Higashi, the Compressive Response of a Closed-Cell Aluminum Foam at High Strain Rate, Scr. Mater., 2006, 54(4), p 533–537CrossRefGoogle Scholar
  26. 26.
    M. Peroni, L. Peroni, and M. Avalle, High Strain-Rate Compression Test on Metallic Foam Using a Multiple Pulse SHPB Apparatus, J. Phys. IV, 2006, 134, p 609–616Google Scholar
  27. 27.
    A. Paul and U. Ramamurty, Strain Rate Sensitivity of a Closed-Cell Aluminum Foam, J. Mater. Sci. Eng. A, 2000, 281, p 1–7CrossRefGoogle Scholar
  28. 28.
    Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabie, High Strain Rate Behavior of Composite Metal Foams, Mater. Sci. Eng. A, 2015, 631, p 248–257CrossRefGoogle Scholar
  29. 29.
    B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie, Jr., Hopkinson Bar Experimental Technique: A Critical Review, Appl. Mech. Rev., 2004, 57(4), p 223–250CrossRefGoogle Scholar
  30. 30.
    P.T. Araujo, M. Terrones, and M.S. Dresselhaus, Defects and Impurities in Graphene-Like Materials, Mater. Today, 2012, 15(3), p 98–109CrossRefGoogle Scholar
  31. 31.
    K. Ganesan, S. Ghosh, N.G. Krishna, S. Ilango, M. Kamruddin, and A.K. Tyagi, A Comparative Study on Defect Estimation Using XPS and Raman Spectroscopy in Few-Layer Nanographitic Structures, Phys. Chem. Chem. Phys., 2016, 18(32), p 22160–22167CrossRefGoogle Scholar
  32. 32.
    D.P. Mondal et al., Al-Alloy 10% SiC and Al Alloy-10 wt.% SiC-1.0 wt.% Graphene. Unpublished DataGoogle Scholar
  33. 33.
    S. Birla, D.P. Mondal, S. Das, N. Prasanth, A.K. Jha, and ANCh Venkat, Compressive Deformation Behaviour of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam, Trans. Indian Inst. Met., 2018, 70(7), p 1827–1840CrossRefGoogle Scholar
  34. 34.
    L. Blaz and E. Evangelista, Strain Rate Sensitivity of Hot Deformed Al and AlMgSi Alloy, Mater. Sci. Eng. A, 1996, 207, p 195–201CrossRefGoogle Scholar
  35. 35.
    L.A. Yolshina, M.V. Muradymov, I.V. Korsun, G.A. Yokovlev, and S.V. Smirnov, Novel Aluminum-Graphene and Aluminium-Graphite Metallic Composite Materials: Synthesis and Properties, J. Alloys Compd., 2016, 663, p 449–459CrossRefGoogle Scholar
  36. 36.
    A. Fadavi Boostani, S. Tahamtan, Z.Y. Jiang, D. Wei, S. Yazdani, R. Khosroshahi Azari, R. Taherzadeh Mousavian, J. Xu, X. Zhang, and D. Gong, Enhanced Tensile Properties of Aluminum Matrix Composites Reinforced with Graphene Encapsulated SiC Nanoparticles, Compos. A Appl. Sci. Manuf., 2015, 68, p 155–163CrossRefGoogle Scholar
  37. 37.
    M.F. Ashby, A.G. Evans, N.A. Fleck, and L.J. Gibson, Metal Foam: A Design Guide, Butterworth-Heinemann, Oxford, 2000Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of MissouriColumbiaUSA
  2. 2.Advanced Materials and Processes Research InstituteCSIR AMPRIBhopalIndia

Personalised recommendations