Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 263–272 | Cite as

EBSD Study on Processing Domain Parameters of Oxide Dispersion Strengthened 18Cr Ferritic Steel

  • Manmath Kumar DashEmail author
  • S. Saroja
  • Rahul John
  • R. Mythili
  • Arup Dasgupta
Article
  • 49 Downloads

Abstract

This paper presents the results of an experimental study aimed to identify hot working domains in oxide dispersion strengthened (ODS) 18Cr ferritic steel over a wide range of temperatures (1323-1473 K) and strain rates (0.01-10 s−1). The experimental data were obtained by uniaxial compression test using the Gleeble-1500D simulator in this range of temperature and strain rate. An inverse relationship with temperature and positive strain rate sensitivity associated with dynamic recovery and recrystallization, which is influenced by temperature and strain rate, was derived from the flow stress. Based on the processing map generated at 0.5 true strain, using rate dynamic material model (DMM) approach and the calculated instability parameter \(\left( {\xi \left( \acute{\epsilon} \right)} \right) > 0\), the optimum processing domain has been determined for this steel. The most favorable processing parameters are found in the temperature ranges of 1350-1450 K with a strain rate of 0.01 s−1 and 1473 K with a strain rate 0.1 s−1 with peak efficiency of 30 and 35%, respectively. The material flow behavior was studied using scanning electron microscopy (SEM)-based EBSD microstructural characterization. The steel subjected to 1323 K at high strain rate 10 s−1 in the low-efficiency workability region showed low aspect ratio as compared to the elongated bamboo-like initial microstructure; however, minimum strain rate (0.01 s−1) showing that localized slip/shearing is the key mechanism and fiber texture studied from the intensity distribution of inverse pole figure showed the presence of significant amount of θ-fibers. In contrast, dynamic recrystallization dominated at higher efficiency region in the safe domain of processing map and γ-fiber texture was evident in the specimen deformed at 1373 and 1473 K with strain rate of 0.01 and 0.1 s−1, respectively, which is responsible for the change in the initial 〈1 1 0〉//ED α-fiber texture.

Keywords

EBSD fiber texture processing stainless steel 

Notes

Acknowledgments

The authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement during this work. The authors thank Nuclear Fuel Complex (NFC), Hyderabad, for the hot extruded samples. They also thank Dept. of MME, IIT-Madras, Chennai, for providing the Gleeble simulator facility for uniaxial compression testing and UGC-DAE-CSR at Kalpakkam for extending the FEG-SEM facility.

References

  1. 1.
    K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195Google Scholar
  2. 2.
    A. Aitkaliyeva, L. He, H. Wen, B. Miller, X.M. Bai, and T. Allen, Irradiation Effects in Generation IV Nuclear Reactor Materials, Structural Materials for Generation IV Nuclear Reactors, chap. 7, Elsevier, Amsterdam, 2017, p 253–283Google Scholar
  3. 3.
    V. de Castro, E.A. Marquis, S.L. Perez, R. Pareja, and M.L. Jenkins, Stability of Nanoscale Secondary Phases in an Oxide Dispersion Strengthened Fe-12Cr Alloy, Acta Mater., 2001, 59, p 3927–3936Google Scholar
  4. 4.
    P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12Google Scholar
  5. 5.
    R.L. Klueh, Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Int. Mater. Rev., 2005, 50, p 287–312Google Scholar
  6. 6.
    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials, J. Nucl. Mater., 1993, 204, p 65–73Google Scholar
  7. 7.
    S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757Google Scholar
  8. 8.
    C. Cayron, E. Rath, I. Chu, and S. Launois, Microstructural Evolution of Y2O3 and MgAl2O4 ODS EUROFER steels During Their Elaboration by Mechanical Milling and Hot Isostatic Pressing, J. Nucl. Mater., 2004, 335, p 83–102Google Scholar
  9. 9.
    A. Alamo, J.L. Bertin, V.K. Shamardin, and P. Wident, Mechanical Properties of 9Cr Martensitic Steels and ODS-FeCr Alloys After Neutron Irradiation at 325 °C up to 42 dpa, J. Nucl. Mater., 2007, 367–370, p 54–59Google Scholar
  10. 10.
    H. Hadraba, B. Fournier, L. Stratil, J. Malaplate, A.L. Rouffié, P. Wident, L. Ziolek, and J.L. Béchade, Influence of Microstructure on Impact Properties of 9–18%Cr ODS Steels for Fusion/Fission Applications, J. Nucl. Mater., 2011, 411, p 112–118Google Scholar
  11. 11.
    T. Tanno, M. Takeuchi, S. Ohtsuka, and T. Kaito, Corrosion Behavior of ODS Steels with Several Chromium Contents in Hot Nitric Acid Solutions, J. Nucl. Mater., 2017, 494, p 219–226Google Scholar
  12. 12.
    Z. Oksiuta, High-Temperature Oxidation Resistance of Ultrafine-Grained 14%Cr ODS Ferritic Steel, J. Mater. Sci., 2013, 48, p 4801–4805Google Scholar
  13. 13.
    R. Novotny, P. Janik, S. Penttila, P. Hahner, J. Macak, J. Siegl, and P. Hauˇsild, High Cr ODS Steels Performance Under Supercritical Water Environment, J. Supercrit. Fluids, 2013, 81, p 147–156Google Scholar
  14. 14.
    A. García-Junceda, M. Hernández-Mayoral, and M. Serrano, Influence of the Microstructure on the Tensile and Impact Properties of a 14Cr ODS Steel Bar, Mater. Sci. Eng. A, 2012, 556, p 696–703Google Scholar
  15. 15.
    S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi, Tube Manufacturing and Characterization of Oxide Dispersion Strengthened Ferritic Steels, J. Nucl. Mater., 2000, 283–287, p 702–706Google Scholar
  16. 16.
    M.J. Alinger, G.R. Odette, and G.E. Lucas, Tensile and Fracture Toughness Properties of MA957: Implications to the Development of Nanocomposited Ferritic Alloys, J. Nucl. Mater., 2002, 307, p 484–489Google Scholar
  17. 17.
    M. Wang, Z. Zhou, H. Sun, H. Hu, and S. Li, Microstructural Observation and Tensile Properties of ODS-304 Austenitic Steel, Mater. Sci. Eng. A, 2013, 559, p 287–292Google Scholar
  18. 18.
    Z. Oksiuta, P. Mueller, and P. Spatig, Effect of Thermo-mechanical Treatments on the Microstructure and Mechanical Properties of an ODS Ferritic Steel, J. Nucl. Mater., 2011, 412, p 221–226Google Scholar
  19. 19.
    D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng. A, 2011, 528, p 8565–8572Google Scholar
  20. 20.
    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325, p 112–125Google Scholar
  21. 21.
    L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, and G.S. Wang, Characteristics of Hot Compression Behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy with an Equiaxed Microstructure, Mater. Sci. Eng. A, 2009, 505, p 136–143Google Scholar
  22. 22.
    S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Map for Cold and Hot Working of Stainless Steel Type AISI, 304 L, Mater. Lett., 1992, 15, p 79–83Google Scholar
  23. 23.
    S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Maps for Hot Working of Commercial Grade Wrought Stainless Steel type AISI, 304, Mater. Sci. Eng. A, 1994, 177, p 143–149Google Scholar
  24. 24.
    P.V. Sivaprasad, S. Venugopal, V. Maduraimuthu, M. Vasudevan, S.L. Mannan, Y.V.R.K. Prasad, and R.C. Chaturvedi, Validation of Processing Maps for a 15Cr-15Ni-2.2Mo-0.3Ti Austenitic Stainless Steel Using Hot Forging and Rolling Tests, J. Mater. Process. Technol., 2003, 132, p 262–268Google Scholar
  25. 25.
    P.V. Sivaprasad, S.L. Mannan, and Y.V.R.K. Prasad, Identification of Optimum Process Parameters for Hot Extrusion Using Finite Element Simulation and Processing Maps, Mater. Sci. Technol., 2004, 20, p 1545–1550Google Scholar
  26. 26.
    G. Zhang, Z. Zhou, H. Sun, L. Zou, M. Wang, and S. Li, Hot Deformation Behavior and Processing Map of a 9Cr Ferritic/Martensitic ODS Steel, J. Nucl. Mater., 2014, 455, p 139–144Google Scholar
  27. 27.
    T. Narita, S. Ukai, T. Kaito, S. Ohtsuka, and T. Kobayashi, Development of Two-Step Softening Heat Treatment for Manufacturing 12Cr-ODS Ferritic Steel Tubes, J. Nucl. Sci. Technol., 2012, 41, p 1008–1012Google Scholar
  28. 28.
    M. Nagini, R. Vijay, K.V. Rajulapati, K.B. Rao, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel, Met. Trans. A, 2016, 47, p 4197–4209Google Scholar
  29. 29.
    Y. Li, E. Onodera, and A. Chiba, Evaluation of Friction Coefficient by Simulation in Bulk Metal Forming Process, Met. Trans. A, 2010, 51, p 1210–1215Google Scholar
  30. 30.
    D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr-1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528, p 5204–5211Google Scholar
  31. 31.
    B. Verlinden, J. Driver, I. Samajhdar, and R.D. Doherty, Thermo-mechanical Processing of Metallic Material, Elsevier, London, 2007Google Scholar
  32. 32.
    J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo, and L.A.I. Kestens, Through Process Texture Evolution and Magnetic Properties of High Si Non-oriented Electrical Steels, Mater. Character., 2012, 71, p 49–57Google Scholar
  33. 33.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 1995Google Scholar
  34. 34.
    C.L. Chen, G.J. Tatlock, and A.R. Jones, Effect of Annealing Temperatures on the Secondary Re-crystallization of Extruded PM2000 Steel Bar, J. Microsc., 2009, 233, p 474–481Google Scholar
  35. 35.
    M. Serrano, M. Hernández-Mayoral, and A. García-Junceda, Microstructural Anisotropy Effect on the Mechanical Properties of a 14Cr ODS Steel, J. Nucl. Mater., 2012, 428, p 103–109Google Scholar
  36. 36.
    E.I. Poliakt and J.J. Jonass, One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136Google Scholar
  37. 37.
    A. Sarkar, A. Marchattiwar, J.K. Chakravartty, and B.P. Kashyap, Kinetics of Dynamic Recrystallization in Ti-Modified 15Cr-15Ni-2Mo Austenitic Stainless Steel, J. Nucl. Mater., 2013, 432, p 9–15Google Scholar
  38. 38.
    G.V. Prasad, M. Goerdeler, and G. Gottstein, Work Hardening Model Based on Multiple Dislocation Densities, Mater. Sci. Eng. A, 2005, 400, p 231–233Google Scholar
  39. 39.
    A.D. Rollett and U.F. Kocks, A Review of the Stages of Work Hardening, Solid State Phenom., 1993, 35(36), p 1–9Google Scholar
  40. 40.
    E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691Google Scholar
  41. 41.
    C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metal., 1966, 14, p 1136–1138Google Scholar
  42. 42.
    H. Li, D. Wei, J. Hua, Y. Li, and S. Chen, Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53, p 425–430Google Scholar
  43. 43.
    H. Takuda, H. Fujimoto, and N. Hatta, Modelling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures, J. Mater. Proc. Technol., 1998, 80–81, p 513–516Google Scholar
  44. 44.
    A. Galiyev, R. Kaibyshev, and T. Saikai, Continuous Dynamic Recrystallization in Magnesium Alloy, Mater. Sci. Forum, 2003, 419–422, p 509–514Google Scholar
  45. 45.
    T. Sakai and J.J. Jonas, Strength and Structure Under Hot-Working Conditions, Acta Mater., 1984, 32, p 189–209Google Scholar
  46. 46.
    D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Design, 2010, 31, p 981–984Google Scholar
  47. 47.
    H. Ziegler, I.N. Sneddon, and R. Hill, Ed., Progress in Solid Mechanics, Wiley, New York, 1965, p 91–193Google Scholar
  48. 48.
    I. Prigogine, Time, Structure and Fluctuations, Science, 1978, 201, p 777–785Google Scholar
  49. 49.
    Y. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12(6), p 638–645Google Scholar
  50. 50.
    Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258Google Scholar
  51. 51.
    L. Wang, Y. Fan, and G. Huang, Plastic Deformation at Elevated Temperature and Processing Maps of Magnesium Alloy, Chin. J. Nonferrous Met., 2004, 14(7), p 1068–1072Google Scholar
  52. 52.
    T.S. Chou and H.K.D.H. Bhadeshia, Grain Control in Mechanically Alloyed Oxide Dispersion Strengthened MA957 Steel, Mater. Sci. Technol., 1993, 9, p 890–897Google Scholar
  53. 53.
    M. G. Stout, J. S. Kallend, U.F. Kocks, M. A. Przystupa and A. D. Rollet, in Proceedings on 8 International Conference on Textures of Materials, J.S. Kallend and G. Gottstein, Eds., TMS, Warrendale, 1988, p 479–484Google Scholar
  54. 54.
    B. Sander and D. Raabe, Texture Inhomogeneity in a Ti-Nb-Based β-Titanium Alloy After Warm Rolling and Recrystallization, Mater. Sci. Eng. A, 2008, 479, p 236–247Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Manmath Kumar Dash
    • 1
    • 2
    Email author
  • S. Saroja
    • 1
    • 2
  • Rahul John
    • 3
  • R. Mythili
    • 1
    • 2
  • Arup Dasgupta
    • 1
    • 2
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.IGCARHBNIKalpakkamIndia
  3. 3.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations