Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 254–262 | Cite as

Role of Si in the Surface Damage Mechanism of RB-SiC/Si Under Mechanical Loading

  • Quanli ZhangEmail author
  • Zhen Zhang
  • Honghua Su
  • Qingliang Zhao
  • Suet To


Indentation test (Nanoindentation and Vickers indentation), diamond scratching and high spindle speed grinding are conducted to investigate the role of silicon (Si) in the surface damage behavior of reaction-bonded SiC/Si composites (RB-SiC/Si). Even though the addition of Si contributes to densifying the bulk materials and improving the toughness, the indentation and diamond scratching results firstly indicate that the cracks initiate at the SiC/Si interfaces due to the non-uniform deformation caused by the existence of Si, and the phase transformation of Si also leads to the pop-out effect during the nanoindentation and the diamond scratching test. The ground surface of RB-SiC/Si is characterized by scratching grooves and brittle fracture, indicating the ductile material removal mode and brittle material removal mode for RB-SiC/Si, respectively, and the surface reliefs form on the ground surface due to the different hardness between Si and SiC phases. Moreover, the phase transformation of Si contributes to the easy fracture of phase boundaries under the mechanical loading, and the accompanied volume change also results in the dislodgement of hard particles and the generation of surface burs on the ground surface.


fracture grain boundaries grinding phase transformation RB-SiC/Si 



Brittleness of the material


Elastic modulus


Vickers hardness


Fracture toughness


Material density


Depth of cut


Feed rate


The indentation load


The crack length by indentation


The diagonal length of the imprint





The work was partially supported by the National Natural Science Foundation of China (NSFC) (Project No.: 51805257, 51475109 and 51275231).


  1. 1.
    H.Q. Sun, R. Irwan, H. Huang, and G.W. Stachowiak, Surface Characteristics and Removal Mechanism of Cemented Tungsten Carbides in Nanoscratching, Wear, 2010, 268, p 1400–1408CrossRefGoogle Scholar
  2. 2.
    B. Guo, Q. Zhao, and M. Jackson, Precision Grinding of Binderless Ultrafine Tungsten Carbide (WC) Microstructured Surfaces, Int. J. Adv. Manuf. Technol., 2013, 64, p 727–735CrossRefGoogle Scholar
  3. 3.
    P.G. Neudeck and L.G. Matus, An Overview of Silicon Carbide Device Technology, AIP Conf. Proc., 1992, 246, p 246–253CrossRefGoogle Scholar
  4. 4.
    Y. Lu, D. He, J. Zhu, and X. Yang, First-Principles Study of Pressure-Induced Phase Transition in Silicon Carbide, Phys. B, 2008, 403, p 3543–3546CrossRefGoogle Scholar
  5. 5.
    J. Ni and B. Li, Phase Transformation in High-Speed Cylindrical Grinding of SiC and Its Effects on Residual Stresses, Mater. Lett., 2012, 89, p 150–152CrossRefGoogle Scholar
  6. 6.
    N.R. Calderon, M. Martínez-Escandell, J. Narciso, and F. Rodríguez-Reinoso, The Combined Effect of Porosity and Reactivity of the Carbon Preforms on the Properties of SiC Produced by Reactive Infiltration with Liquid Si, Carbon, 2009, 47, p 2200–2210CrossRefGoogle Scholar
  7. 7.
    Q. Huang and L. Zhu, High-Temperature Strength and Toughness Behaviors for Reaction-Bonded SiC Ceramics Below 1400 & #xB0;C, Mater. Lett., 2005, 59, p 1732–1735CrossRefGoogle Scholar
  8. 8.
    H. Liang, X. Yao, H. Zhang, X. Liu, and Z. Huang, Friction and Wear Behavior of Pressureless Liquid Phase Sintered SiC Ceramic, Mater. Des., 2015, 65, p 370–376CrossRefGoogle Scholar
  9. 9.
    J.N. Ness and T.F. Page, Microstructural Evolution in Reaction-Bonded Silicon Carbide, J. Mater. Sci., 1986, 21, p 1377–1397CrossRefGoogle Scholar
  10. 10.
    J.J. Swab, A.A. Wereszczak, J. Pritchett, and K. Johanns, Influence of Microstructure on the Indentation-Induced Damage in Silicon Carbide, Adv. Ceram. Armor II: Ceram. Eng. Sci. Proc., 2007, 27, p 251–259Google Scholar
  11. 11.
    B.R. Lawn and A.G. Evans, A Model for Crack Initiation in Elastic/Plastic Indentation Fields, J. Mater. Sci., 1977, 12, p 2195–2199CrossRefGoogle Scholar
  12. 12.
    H.H.K. Xu, N.P. Padture, and S. Jahanmir, Effect of Microstructure on Material-Removal Mechanisms and Damage Tolerance in Abrasive Machining of Silicon Carbide, J. Am. Chem. Soc., 1995, 78, p 2443–2448Google Scholar
  13. 13.
    S. Agarwal and P.V. Rao, Experimental Investigation of Surface/Subsurface Damage Formation and Material Removal Mechanisms in SiC Grinding, Int. J. Mach. Tools Manuf., 2008, 48, p 698–710CrossRefGoogle Scholar
  14. 14.
    S. Agarwal and P.V. Rao, Grinding Characteristics, Material Removal and Damage Formation Mechanisms in High Removal Rate Grinding of Silicon Carbide, Int. J. Mach. Tools Manuf., 2010, 50, p 1077–1087CrossRefGoogle Scholar
  15. 15.
    S. Agarwal and P.V. Rao, Improvement in Productivity in SiC Grinding, Proc. IMechE, Part B: J. Eng. Manuf., 2011, 225, p 811–830CrossRefGoogle Scholar
  16. 16.
    Li, F. Zhang, Z. Ma, Study on grinding surface deformation and subsurface damage mechanism of reaction-bonded SiC ceramics, Proc. IMechE, Part B: J Engineering Manufacture, 2016, p 1-10Google Scholar
  17. 17.
    F. Zhang, B. Meng, Y. Geng, Y. Zhang, and Z. Li, Friction Behavior in Nanoscratching of Reaction Bonded Silicon Carbide Ceramic with Berkovich and Sphere Indenters, Tribol. Int., 2016, 97, p 21–30CrossRefGoogle Scholar
  18. 18.
    C. Wu, B. Li, and S.Y. Liang, A Critical Energy Model for Brittle-Ductile Transition in Grinding Considering Wheel Speed and Chip Thickness Effects, Proc. IMechE B: J. Eng. Manuf., 2016, 230, p 1372–1380CrossRefGoogle Scholar
  19. 19.
    B.V. Tanikella, A.H. Somasekhar, A.T. Sowers, R.J. Nemanich, and R.O. Scattergood, Phase Transformations During Microcutting Tests on Silicon, Appl. Phys. Lett., 1996, 69, p 2870–2872CrossRefGoogle Scholar
  20. 20.
    A. Kailer, Y.G. Gogotsi, and K.G. Nickel, Phase Transformations of Silicon Caused by Contact Loading, J. Appl. Phys., 1997, 81, p 3057–3063CrossRefGoogle Scholar
  21. 21.
    H. Huang and J. Yan, New Insights into Phase Transformations in Single Crystal Silicon by Controlled Cyclic Nanoindentation, Scr. Mater., 2015, 102, p 35–38CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, S. To, Q. Zhao, B. Guo, and G. Zhang, Impact of Material Microstructure and Diamond Grit Wear on Surface Finish in Micro-grinding of RB-SiC/Si and WC/Co Carbides, Int. J. Refract. Met. Hard Mater., 2015, 51, p 258–263CrossRefGoogle Scholar
  23. 23.
    V. Domnich, Y. Gogotsi, and S. Dub, Effect of Phase Transformations on the Shape of the Unloading Curve in the Nanoindentation of Silicon, Appl. Phys. Lett., 2000, 76, p 2214–2216CrossRefGoogle Scholar
  24. 24.
    T.F. Page, W.C. Oliver, and C.J. McHargue, The Deformation Behavior of Ceramic Crystals Subjected to Very Low Load (nano)indentations, J. Mater. Res., 1992, 7, p 450–473CrossRefGoogle Scholar
  25. 25.
    H. Huang and J.W. Yan, Possibility for Rapid Generation of High-Pressure Phases in Single-Crystal Silicon by Fast Nanoindentation, Semicond. Sci. Technol., 2015, 30, p 115001CrossRefGoogle Scholar
  26. 26.
    L. Yin and H. Huang, Brittle Materials in Nano-abrasive Fabrication of Optical Mirror-Surfaces, Precis. Eng., 2008, 32, p 336–341CrossRefGoogle Scholar
  27. 27.
    J.B. Quinn, J. Yen, R.N. Katz, and I.K. Lloyd, Subjective Ceramic Machinability and Material Properties, Mach. Sci. Technol., 2002, 6, p 291–299CrossRefGoogle Scholar
  28. 28.
    J.B. Quinn and G.D. Quinn, Indentation Brittleness of Ceramics: A Fresh Approach, J. Mater. Sci., 1997, 32, p 4331–4346CrossRefGoogle Scholar
  29. 29.
    B.R. Lawn and D.B. Marshall, Hardness, Toughness, and Brittleness: An Indentation Analysis, J. Amer. Chem. Soc., 1979, 62, p 347–350Google Scholar
  30. 30.
    G.Z. Voyiadjis and R. Peters, Size Effects in Nanoindentation: An Experimental and Analytical Study, Acta Mech., 2009, 211, p 131–153CrossRefGoogle Scholar
  31. 31.
    M.T. Laugier, New Formula for Indentation Toughness in Ceramics, J. Mater. Sci. Lett., 1987, 6, p 355–356CrossRefGoogle Scholar
  32. 32.
    S. Goel, X. Luo, P. Comley, R.L. Reuben, and A. Cox, Brittle-Ductile Transition During Diamond Turning of Single Crystal Silicon Carbide, Int. J. Mach. Tools Manuf., 2013, 65, p 15–21CrossRefGoogle Scholar
  33. 33.
    J. Gao, J. Chen, G. Liu, Y. Yan, X. Liu, and Z. Huang, Role of Microstructure on Surface and Subsurface Damage of Sintered Silicon Carbide During Grinding and Polishing, Wear, 2010, 270, p 88–94CrossRefGoogle Scholar
  34. 34.
    Y. Gogotsi, C. Baek, and F. Kirscht, Raman Microspectroscopy Study of Processing-Induced Phase Transformations and Residual Stress in Silicon, Semicond. Sci. Technol., 1999, 14, p 936–944CrossRefGoogle Scholar
  35. 35.
    T.G. Bifano, T.A. Dow, and R.O. Scattergood, Ductile-Regime Grinding: A New Technology for Machining Brittle Materials, J. Manuf. Sci. Eng., 1991, 113, p 184–189Google Scholar
  36. 36.
    Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, and K.G. Nickel, Cyclic Nanoindentation and Raman Microspectroscopy Study of Phase Transformations in Semiconductors, J. Mater. Res., 2000, 15, p 871–879CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Quanli Zhang
    • 1
    Email author
  • Zhen Zhang
    • 1
  • Honghua Su
    • 1
  • Qingliang Zhao
    • 2
  • Suet To
    • 3
  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Centre for Precision Engineering, School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.State Key Laboratory of Ultra-precision Machining TechnologyThe Hong Kong Polytechnic UniversityHung HomChina

Personalised recommendations