Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 242–253 | Cite as

Mechanical Alloying and Powder Forging of 18%Cr Oxide Dispersion-Strengthened Steel Produced Using Elemental Powders

  • D. Kumar
  • U. PrakashEmail author
  • V. V. Dabhade
  • K. Laha
  • T. Sakthivel
Article
  • 27 Downloads

Abstract

Oxide dispersion-strengthened (ODS) ferritic steels are potential materials for cladding tubes in fast breeder fission reactors. These are mostly prepared by mechanical alloying of yttria powder with pre-alloyed powders. Using elemental powders offers flexibility in the choice of alloy compositions. Here we report mechanical alloying of Fe-18Cr-2W-0.2Ti-0.35Y2O3 (compositions in wt.%) ODS steel using elemental powders of Fe, Cr, W and Ti with yttria powder. After 5 h of milling, no significant changes in particle size and crystallite size were observed. Powders milled for 5 and 7 h were consolidated through powder forging route. The optimum milling time for mechanical alloying could be determined only after evaluating the forgings. It is difficult to achieve recrystallization in ODS alloys. The forging process parameters were optimized to achieve a dense alloy with a fine recrystallized microstructure. Factors leading to recrystallization are discussed. It is shown that recrystallization in ODS steels is more likely to occur during forging as compared to extrusion/rolling. The powder forging route offers several advantages over the conventional extrusion or HIP routes.

Keywords

alloying kinetics forging mechanical alloying mechanical properties ODS steel powder metallurgy recrystallization 

Notes

Acknowledgments

The first author (Deepak Kumar) would like to thank MHRD (Ministry of Human Resource Development), GOI (Government of India) for providing the fellowship. This research work was funded by the BRNS (Board of Research in Nuclear Sciences), Bombay (Project No: 2010/36/68-BRNS).

References

  1. 1.
    S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje, Selection of Materials for Prototype Fast Breeder Reactor, Trans. Ind. Inst. Metals, 2003, 56, p 155–178Google Scholar
  2. 2.
    S. Latha, M.D. Mathew, P. Parameswaran, K.B.S. Rao, and S.L. Mannan, Thermal Creep Properties of Alloy D9 Stainless Steel and 316 Stainless Steel Fuel Clad Tubes, Int. J. Pres. Ves. Pip., 2008, 85, p 866–870CrossRefGoogle Scholar
  3. 3.
    P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V.S. Sarma, Microstructural Studies on Nanocrystalline Oxide Dispersion Strengthened Austenitic (Fe-18Cr-8Ni-2W-0.25Y2O3) Alloy Synthesized by High Energy Ball Milling and Vacuum Hot Pressing, J. Mater. Sci., 2010, 45, p 4858–4865CrossRefGoogle Scholar
  4. 4.
    S.J. Zinkle and J.T. Busby, Structural Materials for Fission & Fusion Energy, Mater. Today, 2009, 12(11), p 12–19CrossRefGoogle Scholar
  5. 5.
    C.R.F. Azevedo, Selection of Fuel Cladding Material for Nuclear Fission Reactors, Eng. Fail. Anal., 2011, 18, p 1943–1962CrossRefGoogle Scholar
  6. 6.
    T. Allen, J. Busby, M. Meyer, and D. Petti, Material Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23CrossRefGoogle Scholar
  7. 7.
    J.G. Marques, Evolution of Nuclear Fission Reactors: Third Generation and Beyond, Energy Convers. Manag., 2010, 51, p 1774–1780CrossRefGoogle Scholar
  8. 8.
    S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings, J. Nucl. Sci. Technol., 2002, 39(8), p 872–879CrossRefGoogle Scholar
  9. 9.
    S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757CrossRefGoogle Scholar
  10. 10.
    J.S. Cheon, C.B. Lee, B.O. Lee, J.P. Raison, T. Mizuno, F. Delage, and J. Carmack, Sodium Fast Reactor Evaluation: Core Materials, J. Nucl. Mater., 2009, 392, p 324–330CrossRefGoogle Scholar
  11. 11.
    International Atomic Energy Agency (IAEA), Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies-Operational Behaviour, IAEA Nuclear Energy Series No. NF-T-4.3, IAEA: Vienna; ISSN 1995-7807, 2012, p 1–87Google Scholar
  12. 12.
    K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195CrossRefGoogle Scholar
  13. 13.
    A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels, Nat. Mater., 2011, 10, p 922–926CrossRefGoogle Scholar
  14. 14.
    M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Stability of Ferritic MA/ODS Alloys at High Temperatures, Intermetallics, 2005, 13, p 387–392CrossRefGoogle Scholar
  15. 15.
    C. Cayron, E. Rath, I. Chu, and S. Launois, Microstructural Evolution of Y2O3 and MgAl2O4 ODS Eurofer Steels During Their Elaboration by Mechanical Milling and Hot Isostatic Pressing, J. Nucl. Mater., 2004, 335, p 83–102CrossRefGoogle Scholar
  16. 16.
    M. Inoue, T. Kaito, and S. Ohtsuka, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactors Fuels, Materials Issues for Generation IV Systems, V. Ghetta, D. Gorse, D. Mazière, and V. Pontikis, Ed., Springer, Netherlands, 2008, p 311–325CrossRefGoogle Scholar
  17. 17.
    P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12CrossRefGoogle Scholar
  18. 18.
    Y. Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M.H. Mathon, CEA Developments of New Ferritic ODS Alloys for Nuclear Applications, J. Nucl. Mater., 2009, 386–388, p 430–432CrossRefGoogle Scholar
  19. 19.
    H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, and M. Fujiwara, Precipitation Behaviour of Oxide Particles in Mechanically Alloyed Powder of Oxide-Dispersion-Strengthened Steel, J. Alloys Compd., 2008, 452, p 2–6CrossRefGoogle Scholar
  20. 20.
    C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184CrossRefGoogle Scholar
  21. 21.
    Z. Oksiuta, Microstructural Changes of ODS Ferritic Steel Powders During Mechanical Alloying, Acta Mech. Autom., 2011, 5(2), p 74–78Google Scholar
  22. 22.
    N.Y. Iwata, A. Kimura, M. Fujiwara, and N. Kawashima, Effect of Milling on Morphological and Microstructural Properties of Powder Particles for High-Cr Oxide Dispersion Strengthened Ferritic Steels, J. Nucl. Mater., 2007, 367–370, p 191–195CrossRefGoogle Scholar
  23. 23.
    H. Xu, Z. Lu, D. Wang, and C. Liu, Microstructural Evolution in a New Fe Based ODS Alloy Processed by Mechanical Alloying, Nucl. Mater. Energy, 2016, 7, p 1–4CrossRefGoogle Scholar
  24. 24.
    R. Xie, Z. Lu, C. Lu, and C. Liu, Effects of Mechanical Alloying Time on Microstructure and Properties of 9Cr-ODS Steels, J. Nucl. Mater., 2014, 455, p 554–560CrossRefGoogle Scholar
  25. 25.
    A. Ramar, Z. Oksiuta, N. Baluc, and R. Schäublin, Effect of Mechanical Alloying on the Mechanical and Microstructural Properties of ODS Eurofer97, Fusion Eng. Des., 2007, 82, p 2543–2549CrossRefGoogle Scholar
  26. 26.
    C.L. Chen and Y.-M. Dong, Effect of Mechanical Alloying and Consolidation Process on Microstructure and Hardness of Nanostructured Fe-Cr-Al ODS Alloys, J. Mater. Sci. Eng. A, 2011, 528, p 8374–8380CrossRefGoogle Scholar
  27. 27.
    M. Bodart, R. Baccino, and F. Moret, Elaboration and Study of Mechanically Alloyed O.D.S. Ferritic Stainless Steel, J. Phys. IV, 1993, 3, p 709–714Google Scholar
  28. 28.
    M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Influence of the Duration of High Energy Ball Milling on the Microstructure and Mechanical Properties of a 9Cr Oxide Dispersion Strengthened Ferritic-Martensitic Steel, Mater. Sci. Eng. A, 2015, 620, p 490–499CrossRefGoogle Scholar
  29. 29.
    M. Nagini, R. Vijay, K.V. Rajulapati, K.B.S. Rao, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel, Metall. Mater. Trans. A, 2016, 47A, p 4197–4209CrossRefGoogle Scholar
  30. 30.
    G. Sundararajan, R. Vijay, and A.V. Reddy, Development of 9Cr Ferritic-Martensitic and 18Cr Ferritic Oxide Dispersion Strengthened Steels, Curr. Sci., 2013, 105(8), p 1100–1106Google Scholar
  31. 31.
    V. Castro, T. Leguey, M.A. Monge, A. Munoz, R. Pareja, D.R. Amador, J.M. Torralba, and M. Victoria, Mechanical Dispersion of Y2O3 Nanoparticles in Steel EUROFER 97: Process and Optimisation, J. Nucl. Mater., 2003, 322, p 228–234CrossRefGoogle Scholar
  32. 32.
    S.K. Rajulapati, U. Prakash, K. Laha, and V.V. Dabhade, Studies on Alloying Process of a Ferritic/Martensitic Oxide Dispersion Strengthened (ODS) Steel Prepared by Mechanical Alloying of Elemental Powders, Powder Metall., 2016, 59(5), p 350–358CrossRefGoogle Scholar
  33. 33.
    P. He, T. Liu, A. Möslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Commin, P. Vladimirov, S. Nikitenko, and M. Silveir, XAFS and TEM Studies of the Structural Evolution of Yttrium-Enriched Oxides in Nanostructured Ferritic Alloys Fabricated by a Powder Metallurgy Process, Mater. Chem. Phys., 2012, 136, p 990–998CrossRefGoogle Scholar
  34. 34.
    M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, and B. Fournier, Study of the Deformation Mechanisms in a Fe-14%Cr ODS Alloy, J. Mater. Sci., 2012, 428, p 90–97Google Scholar
  35. 35.
    S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe, Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application (I), J. Nucl. Sci. Technol., 1997, 34(3), p 256–263CrossRefGoogle Scholar
  36. 36.
    M. Dade, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, and A. Deschamps, Influence of Consolidation Methods on the Recrystallization Kinetics of a Fe-14Cr Based ODS Steel, J. Nucl. Mater., 2016, 472, p 143–152CrossRefGoogle Scholar
  37. 37.
    Z. Oksiuta and N. Baluc, Microstructure and Charpy Impact Properties of 12-14Cr Oxide Dispersion-Strengthened Ferritic Steels, J. Nucl. Mater., 2008, 374, p 178–184CrossRefGoogle Scholar
  38. 38.
    D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel through Powder Forging, J. Mater. Eng. Perform., 2017, 26(4), p 1817–1824CrossRefGoogle Scholar
  39. 39.
    C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, Inc., New York, 2004, p 1–488Google Scholar
  40. 40.
    C. Suryanarayana and M.G. Norton, X-ray Diffraction A Practical Approach, 1st ed., Springer, Berlin, 1998, p 207–222Google Scholar
  41. 41.
    Z. Oksiuta, E.B. Courjault, and N. Baluc, Relation Between Microstructure and Charpy Impact Properties of an Elemental and Pre-alloyed 14Cr ODS Ferritic Steel Powder After Hot Isostatic Pressing, J. Mater. Sci., 2010, 45, p 3921–3930CrossRefGoogle Scholar
  42. 42.
    U. Prakash, R.A. Buckley, and H. Jones, Formation of B2 Antiphase Domains in Rapidly Solidified Fe-Al Alloys, Philos. Mag. A, 1991, 64, p 797–805CrossRefGoogle Scholar
  43. 43.
    H.K.D.H. Bhadeshia, Recrystallisation of Practical Mechanically Alloyed Iron-Base and Nickel-Base Superalloys, Mater. Sci. Eng. A, 1997, 223, p 64–77CrossRefGoogle Scholar
  44. 44.
    A.G. Junceda, M.H. Mayoral, and M. Serrano, Influence of the Microstructure on the Tensile and Impact Properties of a 14Cr ODS Steel Bar, Mater. Sci. Eng. A, 2012, 556, p 696–703CrossRefGoogle Scholar
  45. 45.
    A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie, Tensile Properties and Deformation Mechanisms of a 14Cr ODS Ferritic Steel, J. Nucl. Mater., 2010, 405, p 95–100CrossRefGoogle Scholar
  46. 46.
    R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys, J. Nucl. Mater., 2005, 341, p 103–114CrossRefGoogle Scholar
  47. 47.
    U. Prakash, T. Raghu, S.V. Kamat, and A.A. Gokhale, The Effect of Mg Addition on Microstructure and Tensile and Stress Rupture Properties of a P/M Al-Fe-Ce Alloy, Scr. Mater., 1998, 39, p 867–872CrossRefGoogle Scholar
  48. 48.
    U. Prakash, T. Raghu, A.A. Gokhale, and S.V. Kamat, Microstructure and Mechanical Properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce Alloys, J. Mater. Sci., 1999, 34, p 5061–5065CrossRefGoogle Scholar
  49. 49.
    D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, High Yttria Ferritic ODS Steels Through Powder Forging, J. Nucl. Mater., 2017, 488, p 75–82CrossRefGoogle Scholar
  50. 50.
    C.C. Montes and H.K.D.H. Bhadeshia, Influence of Deformation on Recrystallization of an Yttrium Oxide Dispersion-Strengthened Iron Alloy (PM2000), Adv. Eng. Mater., 2003, 5(4), p 232–237CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • D. Kumar
    • 1
  • U. Prakash
    • 1
  • V. V. Dabhade
    • 1
  • K. Laha
    • 2
  • T. Sakthivel
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology (IIT)RoorkeeIndia
  2. 2.Mechanical Metallurgy GroupIndira Gandhi Centre for Atomic Research (IGCAR)KalpakkamIndia

Personalised recommendations