Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 448–462 | Cite as

Understanding the Mechanism of Dynamic Recrystallization During High-Temperature Deformation in Nb-1Zr-0.1C Alloy

  • Atanu Chaudhuri
  • Apu Sarkar
  • Rajeev Kapoor
  • J. K. Chakravartty
  • R. K. Ray
  • Satyam Suwas


In the present investigation, a systematic study of the evolution of microstructure and crystallographic texture during hot deformation of Nb-1Zr-0.1C was carried out in the temperature range 1773-1973 K (1500-1700 °C) at different strain rates of 0.001, 0.01 and 0.1 s−1. The aim was to examine the mechanisms of dynamic recovery and recrystallization in a high-temperature range. A detailed microstructural analysis of the deformed samples was performed using the electron backscatter diffraction technique to study the occurrence and nature of various dynamic restoration processes; the different regimes of dynamic recovery and recrystallization were identified. The orientations of the dynamically recrystallized grains were found to be (001) <uvw>.


dynamic recovery dynamic recrystallization EBSD high-temperature deformation Nb-1Zr-0.1C niobium alloy 



The authors are grateful to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India (Grant No. RP-ON 2011/36/19), for financial support for the experimental expenses.


  1. 1.
    R. Begley, D. Harrod, R. Gold, High Temperature Creep and Fracture Behavior of the Refractory Metals, in Refractory Metal Alloys Metallurgy and Technology. (Springer, 1968), pp. 41-83.Google Scholar
  2. 2.
    R. Buckman, Jr, and R. Begley, Development of High Strength Tantalum Base Alloys, Westinghouse Electric Corp, Pittsburgh, PA, 1970CrossRefGoogle Scholar
  3. 3.
    J. Lemberg and R. Ritchie, Mo-Si-B Alloys for Ultrahigh-Temperature Structural Applications, Adv. Mater., 2012, 24(26), p 3445–3480CrossRefGoogle Scholar
  4. 4.
    D. Mazey and C. English, Role of Refractory Metal Alloys in Fusion Reactor Applications, J. Less Common Met., 1984, 100, p 385–427CrossRefGoogle Scholar
  5. 5.
    F. Ostermann, Controlling Carbide Dispersions in Niobium-Base Alloys, J. Less Common Met., 1971, 25(3), p 243–256CrossRefGoogle Scholar
  6. 6.
    S. Primig et al., On the Recrystallization Behavior of Technically Pure Molybdenum, Int. J. Refract Met. Hard Mater., 2010, 28(6), p 703–708CrossRefGoogle Scholar
  7. 7.
    V.S. Sarma et al., Recrystallisation Texture and Magnetisation Behaviour of Some FCC Ni-W Alloys, Scr. Mater., 2004, 50(7), p 953–957CrossRefGoogle Scholar
  8. 8.
    J.H. Schneibel, E.J. Felderman, and E.K. Ohriner, Mechanical Properties of Ternary Molybdenum–Rhenium Alloys at Room Temperature and 1700 K, Scr. Mater., 2008, 59(2), p 131–134CrossRefGoogle Scholar
  9. 9.
    Y. Tang and X. Guo, High Temperature Deformation Behavior of an Optimized Nb–Si Based Ultrahigh Temperature Alloy, Scr. Mater., 2016, 116, p 16–20CrossRefGoogle Scholar
  10. 10.
    B. Lubarsky, L.I. Shure, Applications of Power Systems to Specific Missions, NASA Technical Report (Document ID:19670000948), 1966Google Scholar
  11. 11.
    T. Moss, R. Davies, and G. Barna, Refractory-Alloy Requirements for Space Power Systems, National Aeronautics and Space Administration, Cleveland, OH, 1970CrossRefGoogle Scholar
  12. 12.
    R.H. Titran and M. Uz, Effects of Thermomechanical Processing on Tensile and Long-Time Creep Behavior of Nb-1% Zr-01% C Sheet, National Aeronautics and Space Administration, Cleveland, OH, 1994CrossRefGoogle Scholar
  13. 13.
    R.L. Cummings, R.L. Davies, R.E. English, T.P. Moffitt, Potassium Rankine Systems Technology, NASA Technical Report (Document ID: 19670000946), 1966Google Scholar
  14. 14.
    G.P. Dix, S.S. Voss, Pied Piper: A Historical Overview of the US Space Power Reactor Program, in Space Nuclear Power Systems 1984: Proceedings, vol. 1 (1985)Google Scholar
  15. 15.
    L. Rosenblum, Liquid Metals for Aerospace Electric-Power Systems, JOM, 1963, 15(9), p 637–641CrossRefGoogle Scholar
  16. 16.
    J. Semmel, Refractory Metals in Space Electric Power Conversion Systems, in Refractory Metal Alloys Metallurgy and Technology. (Springer, 1968), pp. 289-324Google Scholar
  17. 17.
    A. Korotayev et al., Nature of Secondary Phases and Mechanism of Rupture in a Niobium-Zirconium-Carbon Alloy, Phys. Met. Metall., 1981, 52(2), p 128–135Google Scholar
  18. 18.
    R.H. Titran, Long-Time Creep Behavior of Nb-1Zr Alloy Containing Carbon, NASA Technical Report (Document ID: 19870016784), 1986Google Scholar
  19. 19.
    R.H. Titran, Creep Strength of Niobium Alloys, Nb-1% Zr and PWC-11, National Aeronautics and Space Administration, Cleveland, OH, 1990Google Scholar
  20. 20.
    R.H. Titran, W.D. Klopp, Long-Time Creep Behavior of the Niobium Alloy C-103, NASA Technical Report (Report Number: NASA-TP-1727, E-224), 1980Google Scholar
  21. 21.
    R.H. Titran, T. Moore, T. Grobstein, Creep Properties of PWC-11 Base Metal and Weldments as Affected by Heat Treatment, NASA Technical Report (Report Number: NASA-TP-1727, E-224), 1986Google Scholar
  22. 22.
    R.H. Titran, M. Uz, Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-1Zr-C Alloys, NASA Technical Report (Report Number: NASA-TM-107207, NAS 1.15:107207, E-10220), 1996Google Scholar
  23. 23.
    Uz, M. and R. Titran, Effects of Processing and Prolonged High Temperature Exposure on the Microstructure of Nb-1Zr-C Sheet. MRS Online Proc. Libr. Arch. 322 (1993).Google Scholar
  24. 24.
    M. Uz, R.H. Titran, Thermal Stability of the Microstructure of an Aged Nb-Zr-C Alloy, in AIP Conference Proceedings (AIP, 1991)Google Scholar
  25. 25.
    I. Dulera and R. Sinha, High Temperature Reactors, J. Nucl. Mater., 2008, 383(1–2), p 183–188CrossRefGoogle Scholar
  26. 26.
    D. Farkas and A. Mukherjee, Creep Behavior and Microstructural Correlation of a Particle-Strengthened Nb-1Zr-0.1C Alloy, J. Mater. Res., 1996, 11(9), p 2198–2205CrossRefGoogle Scholar
  27. 27.
    D. Farkas and A. Mukherjee, Stress Cycle Testing During Creep of a Particle-Strengthened Nb-1Zr-0.1C Alloy, Mater. Sci. Eng. A, 1997, 1(222), p 21–27CrossRefGoogle Scholar
  28. 28.
    B. Vishwanadh et al., Development of Nb-1% Zr-0.1% C Alloy as Structural Components for High Temperature Reactors, J. Nucl. Mater., 2012, 427(1–3), p 350–358CrossRefGoogle Scholar
  29. 29.
    A. Chaudhuri et al., Microstructural Features of Hot Deformed Nb-1Zr-0.1C Alloy, JOM, 2014, 66(9), p 1923–1929CrossRefGoogle Scholar
  30. 30.
    A. Sarkar et al., Hot Deformation Behavior of Nb-1Zr-0.1C Alloy in the Temperature Range 700-1700 °C, J. Nucl. Mater., 2012, 422(1–3), p 1–7CrossRefGoogle Scholar
  31. 31.
    J. Chakravartty, et al. Dynamic Recrystallization in Zirconium Alloys, in Zirconium in the Nuclear Industry: 16th International Symposium. (ASTM International, 2012)Google Scholar
  32. 32.
    A. Marchattiwar et al., Dynamic Recrystallization During Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22(8), p 2168–2175Google Scholar
  33. 33.
    A. Sarkar et al., Creep Behavior of Hydrogenated Zirconium Alloys, J. Mater. Eng. Perform., 2014, 23(10), p 3649–3656CrossRefGoogle Scholar
  34. 34.
    A. Sarkar and J. Chakravartty, Hot Deformation Behavior of Zr-1Nb Alloy: Characterization by Processing Map, J. Nucl. Mater., 2013, 440(1), p 136–142CrossRefGoogle Scholar
  35. 35.
    A. Sarkar et al., Kinetics of Dynamic Recrystallization in Cobalt: A Study Using the Avrami Relation, Physica Status Solidi (A), 2011, 208(4), p 814–818CrossRefGoogle Scholar
  36. 36.
    A. Sarkar, J. Chakravartty, and I. Samajdar, The Avrami Kinetics of Dynamic Recrystallization in Cadmium, Metall. Mater. Trans. A, 2010, 41(10), p 2466–2470CrossRefGoogle Scholar
  37. 37.
    A. Sarkar et al., Kinetics of Dynamic Recrystallization in Ti-Modified 15Cr-15Ni-2Mo Austenitic Stainless Steel, J. Nucl. Mater., 2013, 432(1–3), p 9–15CrossRefGoogle Scholar
  38. 38.
    T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32(2), p 189–209CrossRefGoogle Scholar
  39. 39.
    A. Chaudhuri et al., Hot Deformation Behaviour of Mo-TZM and Understanding the Restoration Processes Involved, Acta Mater., 2019, 164, p 153–164CrossRefGoogle Scholar
  40. 40.
    A. Chaudhuri, A. Sarkar, and S. Suwas, Investigation of Stress–Strain Response, Microstructure and Texture of Hot Deformed Pure Molybdenum, Int. J. Refract Metal. Hard Mater., 2018, 73, p 168–182CrossRefGoogle Scholar
  41. 41.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012Google Scholar
  42. 42.
    W.P. Sun and E.B. Hawbolt, Comparison Between Static and Metadynamic Recrystallization-an Application to the Hot Rolling of Steels, ISIJ Int, 1997, 37(10), p 1000–1009CrossRefGoogle Scholar
  43. 43.
    R.M. Ahmadabadi et al., Dynamic Recrystallization Behavior of AISI, 422 Stainless Steel During Hot Deformation Processes, J. Mater. Eng. Perform., 2018, 27(2), p 560–571CrossRefGoogle Scholar
  44. 44.
    S. Du, S. Chen, and J. Song, Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation, J. Mater. Eng. Perform., 2016, 25(9), p 3646–3655CrossRefGoogle Scholar
  45. 45.
    S. He et al., Effect of Deformation Temperature on Dynamic Recrystallization and CSL Grain Boundary Distribution of Fe-36% Ni Invar Alloy, J. Mater. Eng. Perform., 2018, 27, p 2759–2765CrossRefGoogle Scholar
  46. 46.
    Z. Huang et al., Dynamic Recrystallization Behavior and Texture Evolution of NiAl Intermetallic During Hot Deformation, J. Mater. Eng. Perform., 2017, 26(5), p 2377–2387CrossRefGoogle Scholar
  47. 47.
    R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous Dynamic Recrystallization in α-Zr, Mater. Sci. Eng. A, 2018, 718, p 104–110CrossRefGoogle Scholar
  48. 48.
    Y. Lin et al., EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24CrossRefGoogle Scholar
  49. 49.
    Y. Lin et al., New Constitutive Model for Hot Deformation Behaviors of Ni-Based Superalloy Considering the Effects of Initial δ Phase, J. Mater. Eng. Perform., 2015, 24(9), p 3527–3538CrossRefGoogle Scholar
  50. 50.
    Y. Lin and X.-Y. Wu, A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing, J. Mater. Eng. Perform., 2015, 24(9), p 3549–3557CrossRefGoogle Scholar
  51. 51.
    F. Pilehva et al., Hot Deformation and Dynamic Recrystallization of Ti-6Al-7Nb Biomedical Alloy in Single-Phase β Region, J. Mater. Eng. Perform., 2015, 24(5), p 1799–1808CrossRefGoogle Scholar
  52. 52.
    P.S. Roodposhti et al., Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3697–3709CrossRefGoogle Scholar
  53. 53.
    A. Sarkar et al., High Temperature Deformation Behavior of Zr-1Nb Alloy, J. Alloys Compd., 2017, 703, p 56–66CrossRefGoogle Scholar
  54. 54.
    B. Wang et al., Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot Deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, 22(8), p 2382–2388Google Scholar
  55. 55.
    D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001Google Scholar
  56. 56.
    J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982Google Scholar
  57. 57.
    B. Verlinden et al., Thermo-Mechanical Processing of Metallic Materials, Vol 11, Elsevier, Amsterdam, 2007Google Scholar
  58. 58.
    A. Behera et al., Hot Deformation Behaviour of Niobium in Temperature Range 700-1500°, C. Materials Science and Technology, 2014, 30(6), p 637–644CrossRefGoogle Scholar
  59. 59.
    F. Humphreys, Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction, J. Mater. Sci., 2001, 36(16), p 3833–3854CrossRefGoogle Scholar
  60. 60.
    S. Mitsche, P. Pölt, and C. Sommitsch, Recrystallization Behaviour of the Nickel-Based Alloy 80 A During Hot Forming, J. Microsc., 2007, 227(3), p 267–274CrossRefGoogle Scholar
  61. 61.
    S. Mitsche et al., Quantification of the Recrystallized Fraction in a Nickelbase-Alloy from EBSD-Data, Microsc. Microanal., 2003, 9(S03), p 344–345Google Scholar
  62. 62.
    J. Tarasiuk, P. Gerber, and B. Bacroix, Estimation of Recrystallized Volume Fraction from EBSD Data, Acta Mater., 2002, 50(6), p 1467–1477CrossRefGoogle Scholar
  63. 63.
    S. Wright, Quantification of Recrystallized Fraction from Orientation Imaging Scans, ICOTOM 12 in Proceedings of the 12th International Conference on Textures of Materials (ICOTOM 12), Montreal, Canada, J.A. Szpunar, Ed., NRC Research Press, Ottawa, 1999,Google Scholar
  64. 64.
    N.P. Gurao et al., Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations, Metall. Mater. Trans. A, 2012, 43(13), p 5193–5201CrossRefGoogle Scholar
  65. 65.
    R. Kapoor et al., Softening of Al During Multi-axial Forging in a Channel Die, Mater. Sci. Eng. A, 2013, 560, p 404–412CrossRefGoogle Scholar
  66. 66.
    Y. Zhong et al., Dislocation Structure Evolution and Characterization in the Compression Deformed Mn-Cu Alloy, Acta Mater., 2007, 55(8), p 2747–2756CrossRefGoogle Scholar
  67. 67.
    S. Biswas et al., Evolution of Texture and Microstructure During Hot Torsion of a Magnesium Alloy, Acta Mater., 2013, 61(14), p 5263–5277CrossRefGoogle Scholar
  68. 68.
    S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRefGoogle Scholar
  69. 69.
    S. Biswas and S. Suwas, Evolution of Sub-micron Grain Size and Weak Texture in Magnesium Alloy Mg-3Al-0.4 Mn by a Modified Multi-axial Forging Process, Scr. Mater., 2012, 66(2), p 89–92CrossRefGoogle Scholar
  70. 70.
    W. Aretz, D. Ponge, and G. Gottstein, Evolution of Necklace Structures During Hot Compression of Ni3Al+ B, Scr. Metall. Mater., 1992, 27(11), p 1593–1598CrossRefGoogle Scholar
  71. 71.
    M. Drury and F. Humphreys, The Development of Microstructure in Al-5% Mg During High Temperature Deformation, Acta Metall., 1986, 34(11), p 2259–2271CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Atanu Chaudhuri
    • 1
  • Apu Sarkar
    • 2
  • Rajeev Kapoor
    • 2
  • J. K. Chakravartty
    • 3
  • R. K. Ray
    • 4
  • Satyam Suwas
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Mechanical Metallurgy DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of Metallurgy and Materials ScienceCollege of EngineeringPuneIndia
  4. 4.M N Dastur Centre for Materials Science and EngineeringIndian Institute of Engineering Science and TechnologyShibpurIndia

Personalised recommendations