Advertisement

Grain Refinement of Co-Cr-Mo-C Through Plastic Deformation Followed by Reversion of Lamellar Eutectoid Structure

  • F. Z. HassaniEmail author
  • M. Ketabchi
  • Sh. Zangeneh
  • S. Bruschi
Article
  • 13 Downloads

Abstract

Small plastic straining was combined with a two-step heat treatment to obtain grain refinement of the Co-28Cr-6Mo-0.33C alloy. The solution-treated specimens were furnace cooled to room temperature, obtaining partially transformed pearlite at grain boundaries. Afterward, the specimens were compressed up to 10% of engineering strain, followed by aging at 850 °C that contributed to the decomposition of the austenite phase into a lamellar eutectoid structure (α + M23C6). The full lamellar structure was then reverse-treated at temperatures from 1000 to 1237 °C, where the austenite phase was stable. The reversion treatment led to the nucleation of a fine-grained austenitic structure (with average size of 48.23 ± 21.30 μm—i.e., about 1/10 of its initial average size) at the lamellar eutectoid structure. Compression tests carried out on reverse-transformed samples showed better mechanical properties compared to those of the samples tested before reversing transformation.

Keywords

Co-Cr-Mo alloys grain refinement heating microstructure mechanical behaviors 

Notes

Acknowledgments

This work was fully sponsored by Metal Forming laboratory of Amirkabir University of Technology and Laboratory of Net Shape Forming of Padova University. The authors thank engineer Reza Bahrami for assisting in use of the facilities of Metal Forming laboratory of Amirkabir University of Technology.

References

  1. 1.
    C. Balagna, S. Spriano, and M. Faga, Characterization of Co–Cr–Mo Alloys After a Thermal Treatment for High Wear Resistance, Mater. Sci. Eng., C, 2012, 32, p 1868–1877CrossRefGoogle Scholar
  2. 2.
    F. Hassani, M. Ketabchi, G. Ebrahimi, and S. Bruschi, Hot Compression Deformation Characteristics and Microstructural Evolution of a Co–Cr–Mo–C Alloy: Effect of Precipitate and Martensitic Transformation, Mater. Sci. Eng., A, 2016, 657, p 383–392CrossRefGoogle Scholar
  3. 3.
    T. Narushima, S. Mineta, Y. Kurihara, and K. Ueda, Precipitates in Biomedical Co–Cr Alloys, JOM, 2013, 65, p 489–504CrossRefGoogle Scholar
  4. 4.
    Y. Chen, Y. Li, Y. Koizumi, H. Haider, and A. Chiba, Effects of Carbon Addition on Wear Mechanisms of CoCrMo Metal-On-Metal Hip Joint Bearings, Mater. Sci. Eng., C, 2017, 76, p 997–1004CrossRefGoogle Scholar
  5. 5.
    J. Giacchi, O. Fornaro, and H. Palacio, Microstructural Evolution During Solution Treatment of Co–Cr–Mo–C Biocompatible Alloys, Mater. Charact., 2012, 68, p 49–57CrossRefGoogle Scholar
  6. 6.
    J. Giacchi, C. Morando, O. Fornaro, and H. Palacio, Microstructural Characterization of As-Cast Biocompatible Co–Cr–Mo Alloys, Mater. Charact., 2011, 62, p 53–61CrossRefGoogle Scholar
  7. 7.
    F. Hassani, M. Ketabchi, S. Bruschi, and A. Ghiotti, Effects of Carbide Precipitation on the Microstructural and Tribological Properties of Co–Cr–Mo–C Medical Implants After Thermal Treatment, J. Mater. Sci., 2016, 51, p 4495–4508CrossRefGoogle Scholar
  8. 8.
    G. Faraji, M.M. Mashhadi, and H.S. Kim, Microstructural Evolution of UFG Magnesium Alloy Produced by Accumulative Back Extrusion (ABE), Mater. Manuf. Processes, 2011, 27, p 267–272CrossRefGoogle Scholar
  9. 9.
    S.-H. Lee, E. Takahashi, N. Nomura, and A. Chiba, Effect of Carbon Addition on Microstructure and Mechanical Properties of a Wrought Co–Cr–Mo Implant Alloy, Mater. Trans., 2006, 47, p 287CrossRefGoogle Scholar
  10. 10.
    S. Sabooni, F. Karimzadeh, and M. Enayati, Thermal Stability Study of Ultrafine Grained 304L Stainless Steel Produced by Martensitic Process, J. Mater. Eng. Perform., 2014, 23, p 1665–1672CrossRefGoogle Scholar
  11. 11.
    X. Cui, Y. Wu, X. Liu, Q. Zhao, and G. Zhang, Effects of Grain Refinement and Boron Treatment on Electrical Conductivity and Mechanical Properties of AA1070 Aluminum, Mater. Des., 2015, 86, p 397–403CrossRefGoogle Scholar
  12. 12.
    K. Cheng, C. Lu, K. Tieu, and H. Zhu, Microstructural Evolution and Mechanical Property of AA5050 Alloy Deformed by Accumulative Roll Bonding, Metall. Mater. Trans. B, 2014, 45, p 399–403CrossRefGoogle Scholar
  13. 13.
    K. Yamanaka, M. Mori, and A. Chiba, Mechanical Properties of As-Forged Ni-Free Co–29Cr–6Mo Alloys with Ultrafine-Grained Microstructure, Mater. Sci. Eng., A, 2011, 528, p 5961–5966CrossRefGoogle Scholar
  14. 14.
    M. Mori, K. Yamanaka, and A. Chiba, Effect of Cold Rolling on Phase Decomposition in Biomedical Co–29Cr–6Mo–0.2 N Alloy During Isothermal Heat Treatment at 1073K, J. Alloy. Compd., 2014, 612, p 273–279CrossRefGoogle Scholar
  15. 15.
    F. Hassani and M. Ketabchi, Nano Grained AZ31 Alloy Achieved by Equal Channel Angular Rolling Process, Mater. Sci. Eng., A, 2011, 528, p 6426–6431CrossRefGoogle Scholar
  16. 16.
    S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Effect of Grain Refinement on Mechanical and Electrochemical Properties of Ultra-Fine Grained AA1050 Fabricated via ARB Process, J. Manuf. Process., 2016, 22, p 269–277CrossRefGoogle Scholar
  17. 17.
    M.J. Qarni, G. Sivaswamy, A. Rosochowski, and S. Boczkal, Effect of Incremental Equal Channel Angular Pressing (I-ECAP) on the Microstructural Characteristics and Mechanical Behaviour of Commercially Pure Titanium, Mater. Des., 2017, 122, p 385–402CrossRefGoogle Scholar
  18. 18.
    E. López-Chipres, E. García-Sanchez, E. Ortiz-Cuellar, M. Hernandez-Rodriguez and R. Colás (2010) Optimization of the Severe Plastic Deformation Processes for the Grain Refinement of Al6060 Alloy Using 3D FEM Analysis. J. Mater. Eng. Perform. 1–7.Google Scholar
  19. 19.
    S. Amani, G. Faraji, and K. Abrinia, Microstructure and Hardness Inhomogeneity of Fine-Grained AM60 Magnesium Alloy Subjected to Cyclic Expansion Extrusion (CEE), J. Manuf. Process., 2017, 28, p 197–208CrossRefGoogle Scholar
  20. 20.
    K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, and A. Chiba, Ultrafine grain Refinement of Biomedical Co-29Cr-6Mo Alloy During Conventional Hot-Compression Deformation, Metall. Mater. Trans. A, 2009, 40, p 1980–1994CrossRefGoogle Scholar
  21. 21.
    Y. Liu, Z.X. Kang, J.Y. Zhang, F. Wang, and Y.Y. Li, Influence of Pre-Solution Treatment on Microstructure and Mechanical Properties of Mg–Gd–Nd–Zn–Zr Alloy Processed by ECAP, Adv. Eng. Mater., 2016, 18, p 833–838CrossRefGoogle Scholar
  22. 22.
    Q. Ge, M. Vedani, and G. Vimercati, Extrusion of Magnesium Tubes for Biodegradable Stent Precursors, Mater. Manuf. Processes, 2012, 27, p 140–146CrossRefGoogle Scholar
  23. 23.
    M. Moallemi, A. Najafizadeh, A. Kermanpur, and A. Rezaee, Effect of Reversion Annealing on the Formation of Nano/Ultrafine Grained Structure in 201 Austenitic Stainless Steel, Mater. Sci. Eng., A, 2011, 530, p 378–381CrossRefGoogle Scholar
  24. 24.
    S. Esmaeili, D. Lloyd, and H. Jin, A Thermomechanical Process for Grain Refinement in Precipitation Hardening AA6xxx Aluminum Alloys, Mater. Lett., 2011, 65, p 1028–1030CrossRefGoogle Scholar
  25. 25.
    A. Rezaee, A. Najafizadeh, A. Kermanpur, and M. Moallemi, The Influence of Reversion Annealing Behavior on the Formation of Nanograined Structure in AISI, 201L Austenitic Stainless Steel Through Martensite Treatment, Mater. Des., 2011, 32, p 4437–4442CrossRefGoogle Scholar
  26. 26.
    K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga, Optimal Chemical Composition in Fe–Cr–Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ Int., 1991, 31, p 721–727CrossRefGoogle Scholar
  27. 27.
    P. Muterlle, M. Zendron, M. Perina, R. Bardini, and A. Molinari, Microstructure and Tensile Properties of Metal Injection Molding Co–29Cr–6Mo–0.23 C Alloy, J. Mater. Sci., 2010, 45, p 1091–1099CrossRefGoogle Scholar
  28. 28.
    H. Lashgari, S. Zangeneh, F. Hasanabadi, and M. Saghafi, Microstructural Evolution During Isothermal Aging and Strain-Induced Transformation Followed by Isothermal Aging in Co–Cr–Mo–C Alloy: A Comparative Study, Mater. Sci. Eng., A, 2010, 527, p 4082–4091CrossRefGoogle Scholar
  29. 29.
    M. Caudillo, M. Herrera-Trejo, M. Castro, E. Ramirez, C. Gonzalez, and J. Juarez, On Carbide Dissolution in an As-Cast ASTM F-75 Alloy, J. Biomed. Mater. Res., 2002, 59, p 378–385CrossRefGoogle Scholar
  30. 30.
    L. Ramírez-Vidaurri, M. Castro-Román, M. Herrera-Trejo, C. García-López, and E. Almanza-Casas, Cooling Rate and Carbon Content Effect on the Fraction of Secondary Phases Precipitate in As-Cast Microstructure of ASTM F75 Alloy, J. Mater. Process. Technol., 2009, 209, p 1681–1687CrossRefGoogle Scholar
  31. 31.
    H. Mancha, J. Escalante, G. Mendoza, M. Méndez, E. Carranza, F. Cepedal, and E. Valdés, M23C6 Carbide Dissolution Mechanisms During Heat Treatment of ASTM F-75 Implant Alloys, Metall. Mater. Trans. A, 2001, 32, p 979–984CrossRefGoogle Scholar
  32. 32.
    A. Momeni, K. Dehghani, H. Keshmiri, and G. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng., A, 2010, 527, p 1605–1611CrossRefGoogle Scholar
  33. 33.
    A. Mani and H. Lopez, Deformation Induced FCC to HCP Transformation in a Co–27Cr–5Mo–0.05 C Alloy, Mater. Sci. Eng., A, 2011, 528, p 3037–3043CrossRefGoogle Scholar
  34. 34.
    R. Turrubiates-Estrada, A. Salinas-Rodriguez, and H. Lopez, FCC to HCP Transformation Kinetics in a Co–27Cr–5Mo–0.23 C Alloy, J. Mater. Sci., 2011, 46, p 254–262CrossRefGoogle Scholar
  35. 35.
    A. Saldívar and H. Lopez, Role of Aging on the Martensitic Transformation in a Cast Cobalt Alloy, Scripta Mater., 2001, 45, p 427–433CrossRefGoogle Scholar
  36. 36.
    H. Lashgari, S. Zangeneh, and M. Ketabchi, Isothermal Aging Effect on the Microstructure and Dry Sliding Wear Behavior of Co–28Cr–5Mo–0.3 C Alloy, J. Mater. Sci., 2011, 46, p 7262–7274CrossRefGoogle Scholar
  37. 37.
    M. Mori, K. Yamanaka, and A. Chiba, Phase Decomposition in Biomedical Co–29Cr–6Mo–0.2 N Alloy During Isothermal Heat Treatment at 1073 K, J. Alloy. Compd., 2014, 590, p 411–416CrossRefGoogle Scholar
  38. 38.
    P. Hu, R. Liu, J. Liu, and G. McRae, Investigation of Wear and Corrosion of a High-Carbon Stellite Alloy for Hip Implants, J. Mater. Eng. Perform., 2014, 23, p 1223–1230CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • F. Z. Hassani
    • 1
    Email author
  • M. Ketabchi
    • 1
  • Sh. Zangeneh
    • 2
  • S. Bruschi
    • 3
  1. 1.Mining and Metallurgical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Department of Materials and Textile EngineeringRazi UniversityKermanshahIran
  3. 3.Department of Industrial EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations