Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 183–199 | Cite as

Optimization of Tensile and Corrosion Properties of Dissimilar Friction Stir Welded AA2024-7075 Joints

  • Chenghang Zhang
  • Guangjie Huang
  • Yu Cao
  • Xiaodong Wu
  • Xinde Huang
  • Qing Liu
Article
  • 62 Downloads

Abstract

In this work, we performed some joining experiments of dissimilar aluminum alloys AA2024-T351 and AA7075-T651 using friction stir welding (FSW) technique with different process parameters (rotational speed, welding speed and plunge depth). Response surface methodology based on a central composite rotatable design was used to establish the mathematical models predicting the tensile properties and corrosion rate of dissimilar FSW joints with some high confidence level. Analysis of variance method was employed to verify the developed models. Besides, the influences of FSW process parameters on tensile and corrosion properties of joints were analyzed. In order to obtain a desirable combination property of the dissimilar FSW joints, the optimum process parameters after experimental verification were proposed as: rotational speed 1495 rev/min, welding speed 187 mm/min and plunge depth 0.03 mm. This verification illustrated that the developed models are appropriate for the modeling and optimization of process.

Keywords

corrosion rate dissimilar joint friction stir welding optimization response surface methodology tensile properties 

Notes

Acknowledgments

This study is funded by “the Fundamental Research Funds for the Central Universities” (106112015CDJXY130003, 106112018CDXYCL0018, 106112015CDJXZ138803) and “National Natural Science Foundation of China” (51421001).

References

  1. 1.
    E. Starke and J. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172Google Scholar
  2. 2.
    K. Taylor and A. Sherry, The Characterization and Interpretation of Ductile Fracture Mechanisms in AL2024-T351 Using X-Ray and Focused Ion Beam Tomography, Acta Mater., 2012, 60(3), p 1300–1310Google Scholar
  3. 3.
    T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871Google Scholar
  4. 4.
    Ş. Kasman, Multi-Response Optimization Using the Taguchi-Based Grey Relational Analysis: A Case Study for Dissimilar Friction Stir Butt Welding of AA6082-T6/AA5754-H111, Int. J. Adv. Manuf. Tech., 2013, 68(1–4), p 795–804Google Scholar
  5. 5.
    G. Çam and G. İpekoğlu, Recent Developments in Joining of Aluminum Alloys, Int. J. Adv. Manuf. Tech., 2017, 91(5–8), p 1851–1866Google Scholar
  6. 6.
    J.-Q. Su et al., Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729Google Scholar
  7. 7.
    C. Rhodes et al., Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36(1), p 69–75Google Scholar
  8. 8.
    Thomas, W., Friction stir butt welding. International Patent Application No. PCT/GB92/0220, 1991Google Scholar
  9. 9.
    D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Tech., 2013, 65(1–4), p 115–126Google Scholar
  10. 10.
    R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mat. Sci. Eng. R: Rep., 2005, 50(1), p 1–78Google Scholar
  11. 11.
    R. Nandan, T. DebRoy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023Google Scholar
  12. 12.
    P. Threadgill et al., Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93Google Scholar
  13. 13.
    O. Valerio Flores et al., Microstructural Issues in a Friction-Stir-Welded Aluminum Alloy, Scr. Mater., 1998, 38(5), p 703–708Google Scholar
  14. 14.
    Y.J. Chao and X. Qi, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6, J. Mater. Process. Manu., 1998, 7, p 215–233Google Scholar
  15. 15.
    H.S. Park et al., Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy, Mater. Sci. Eng., A, 2004, 371(1), p 160–169Google Scholar
  16. 16.
    W.B. Lee, Y. Yeon, and S. Jung, The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy, Mater. Sci. Eng., A, 2003, 355(1), p 154–159Google Scholar
  17. 17.
    Y.S. Sato et al., Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., A, 2003, 354(1), p 298–305Google Scholar
  18. 18.
    H. Fujii et al., Effect of Tool Shape on Mechanical Properties and Microstructure of Friction Stir Welded Aluminum Alloys, Mater. Sci. Eng., A, 2006, 419(1), p 25–31Google Scholar
  19. 19.
    W. Xu et al., Influence of Welding Parameters and Tool Pin Profile on Microstructure and Mechanical Properties Along the Thickness in a Friction Stir Welded Aluminum Alloy, Mater. Des., 2013, 47, p 599–606Google Scholar
  20. 20.
    S. Amini, M. Amiri, and A. Barani, Investigation of the Effect of Tool Geometry on Friction Stir Welding of 5083-O Aluminum Alloy, Int. J. Adv. Manuf. Tech., 2015, 76(1–4), p 255–261Google Scholar
  21. 21.
    K.P. Mehta and V.J. Badheka, Effects of Tilt Angle on the Properties of Dissimilar Friction Stir Welding Copper to Aluminum, Mater. Manuf. Process., 2016, 31(3), p 255–263Google Scholar
  22. 22.
    N.Z. Khan et al., Investigations on Tunneling and Kissing Bond Defects in FSW Joints for Dissimilar Aluminum Alloys, J. Alloys Compd., 2015, 648, p 360–367Google Scholar
  23. 23.
    Z. Zhang et al., Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy, Metall. Mater. Trans. A, 2011, 42(6), p 1717–1726Google Scholar
  24. 24.
    Tarasov, S.Y., et al. Effect of friction stir welding parameters on defect formation. in AIP Conference Proceedings. 2015. AIP PublishingGoogle Scholar
  25. 25.
    G.E. Box and K.B. Wilson, On the Experimental Attainment of Optimum Conditions, in Breakthroughs in Statistics, Springer, Berlin, 1992, p 270–310Google Scholar
  26. 26.
    J.-S. Kwak, Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process, Int. J. Mach. Tools Manuf, 2005, 45(3), p 327–334Google Scholar
  27. 27.
    G. Elatharasan and V.S. Kumar, An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy Using RSM, Proc. Eng., 2013, 64, p 1227–1234Google Scholar
  28. 28.
    N.S. Sundaram and N. Murugan, Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminium Alloys, Mater. Des., 2010, 31(9), p 4184–4193Google Scholar
  29. 29.
    D. Venkateswarlu et al., Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys, J. Mater. Eng. Perform., 2015, 24(12), p 4809–4824Google Scholar
  30. 30.
    S. Rajakumar and V. Balasubramanian, Establishing Relationships Between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters, Mater. Des., 2012, 40, p 17–35Google Scholar
  31. 31.
    A. Heidarzadeh et al., Tensile Behavior of Friction Stir Welded AA 6061-T4 Aluminum Alloy Joints, Mater. Des., 2012, 37, p 166–173Google Scholar
  32. 32.
    A.R. Ilkhichi et al., Establishing Mathematical Models to Predict Grain Size and Hardness of the Friction Stir-Welded AA 7020 Aluminum Alloy Joints, Metall. Mater. Trans. B, 2015, 46(1), p 357–365Google Scholar
  33. 33.
    W. Safeen et al., Predicting the Tensile Strength, Impact Toughness, Hardness of Friction Stir-Welded AA6061-T6 Using Response Surface Methodology, Int. J. Adv. Manuf. Tech., 2016, 87(5–8), p 1765–1781Google Scholar
  34. 34.
    G. Rambabu et al., Optimization of Friction Stir Welding Parameters for Improved Corrosion Resistance of AA2219 Aluminum Alloy Joints, Def. Technol., 2015, 11(4), p 330–337Google Scholar
  35. 35.
    Testing A.S.F. and Materials. ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. 2004. ASTMGoogle Scholar
  36. 36.
    A. Heidarzadeh et al., Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints, Metall. Mater. Trans. B, 2013, 44(1), p 175–183Google Scholar
  37. 37.
    M. Farhanchi et al., Mechanical Activation Process for Self-Propagation High-Temperature Synthesis of Ceramic-Based Composites, J. Therm. Anal. Calorim., 2015, 122(1), p 123–133Google Scholar
  38. 38.
    A. Heidarzadeh et al., Tensile Properties of Friction Stir Welds of AA 7020 Aluminum Alloy, T. Indian I. Metals, 2015, 68(5), p 757–767Google Scholar
  39. 39.
    A. Heidarzadeh and T. Saeid, Prediction of Mechanical Properties in Friction Stir Welds of Pure Copper, Mater. Des., 2013, 52, p 1077–1087Google Scholar
  40. 40.
    A. Heidarzadeh and T. Saeid, Correlation Between Process Parameters, Grain Size and Hardness of Friction-Stir-Welded Cu-Zn Alloys, Rare Metals, 2016, 27, p 1–11Google Scholar
  41. 41.
    Z. Zhang, B. Xiao, and Z. Ma, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded 2219Al-T6 Joints, J. Mater. Sci., 2012, 47(9), p 4075–4086Google Scholar
  42. 42.
    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Optimization of the Friction-Stir-Welding Process and Tool Parameters to Attain a Maximum Tensile Strength of AA7075-T6 Aluminium Alloy, P. I. Mech. Eng. B: J. Eng., 2010, 224(8), p 1175–1191Google Scholar
  43. 43.
    R. Kadaganchi, M.R. Gankidi, and H. Gokhale, Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology, Def. Technol., 2015, 11(3), p 209–219Google Scholar
  44. 44.
    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T 6 Aluminium Alloy Joints, Mater. Des., 2011, 32(5), p 2878–2890Google Scholar
  45. 45.
    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints, T. Nonferr. Metal. Soc., 2010, 20(10), p 1863–1872Google Scholar
  46. 46.
    M. Dehghani, A. Amadeh, and S.A. Mousavi, Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel, Mater. Des., 2013, 49, p 433–441Google Scholar
  47. 47.
    Z. Zhang and H. Zhang, Numerical Studies on Effect of Axial Pressure in Friction Stir Welding, Sci. Technol. Weld. Join., 2007, 12(3), p 226–248Google Scholar
  48. 48.
    K. Elangovan, V. Balasubramanian, and M. Valliappan, Influences of Tool Pin Profile and Axial Force on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy, Int. J. Adv. Manuf. Tech., 2008, 38(3), p 285–295Google Scholar
  49. 49.
    Y. Tao et al., Influence of Welding Parameter on Mechanical Properties and Fracture Behavior of Friction Stir Welded Al-Mg-Sc Joints, Mater. Sci. Eng., A, 2014, 612, p 236–245Google Scholar
  50. 50.
    D. Rodrigues et al., Influence of Friction Stir Welding Parameters on the Microstructural and Mechanical Properties of AA 6016-T4 thin Welds, Mater. Des., 2009, 30(6), p 1913–1921Google Scholar
  51. 51.
    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T 6 Aluminium Alloy Joints, Mater. Des., 2011, 32(2), p 535–549Google Scholar
  52. 52.
    F. Zhang et al., Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of a Super High Strength Al-Zn-Mg-Cu Aluminum Alloy, Mater. Des., 2015, 67, p 483–491Google Scholar
  53. 53.
    S. Benavides et al., Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scr. Mater., 1999, 41(8), p 809–815Google Scholar
  54. 54.
    S. Lomolino, R. Tovo, and J. Dos Santos, On the Fatigue Behaviour and Design Curves of Friction Stir Butt-Welded Al Alloys, Int. J. Fatigue, 2005, 27(3), p 305–316Google Scholar
  55. 55.
    K. Elangovan, V. Balasubramanian, and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30(1), p 188–193Google Scholar
  56. 56.
    T.S. Srivatsan, S. Vasudevan, and L. Park, The Tensile Deformation and Fracture Behavior of Friction Stir Welded Aluminum Alloy 2024, Mater. Sci. Eng. A, 2007, 466(1), p 235–245Google Scholar
  57. 57.
    J.C. Bertoncello, S.M. Manhabosco, and L.F. Dick, Corrosion Study of the Friction Stir Lap Joint of AA7050-T76511 on AA2024-T3 Using the Scanning Vibrating Electrode Technique, Corros. Sci., 2015, 94, p 359–367Google Scholar
  58. 58.
    D. Wadeson et al., Corrosion Behaviour of Friction Stir Welded AA7108 T79 Aluminium Alloy, Corros. Sci., 2006, 48(4), p 887–897Google Scholar
  59. 59.
    Besharati-Givi, M.-K. and P. Asadi, Advances in Friction-Stir Welding and Processing. M.K.B. Givi and P. Asadi, Ed., Woodhead Publishing, Cambridge, 2014, p. 65–140Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations