Advertisement

Ultra-Shallow Doping B, Mg, Ni, Cu, Mn, Cr and Fe into SiC with Very High Surface Concentrations Based on Plasma Stimulated Room-Temperature Diffusion

  • Ruixiang Hou
  • Lei Li
  • Xin Fang
  • Hui Zhao
  • Yihang Chen
  • Ziang Xie
  • Guosheng Sun
  • Xinhe Zhang
  • Yanfei Zhao
  • Rong Huang
  • Zengli Huang
  • Youqin He
  • Nongnong Ma
  • Jicai Zhang
  • Wanjing Xu
  • Jinbo Yang
  • Chijie Xiao
  • G. G. Qin
Article
  • 25 Downloads

Abstract

Very recently, we reported a novel doping method called plasma doping without any external bias (PDWOEB) for the introduction of some impurities into Si and GaN at room temperature (RT). In this work, the RT doping of some impurities, including B, Mg, Ni, Cu, Mn, Cr and Fe, into SiC with ultra-shallow depths of tens of nanometer and very high surface concentrations, approaching or exceeding 1E20/cm3, by using PDWOEB is reported. It has been found for the first time that the doping depths and surface concentrations of these impurities doped into SiC by the PDWOEB increase drastically with increasing doping time and the ferromagnetism of SiC due to Ni doping is demonstrated. Moreover, the approximate diffusivities of B, Mg, Ni, Cu, Mn, Cr and Fe in SiC at RT under plasma stimulation are obtained. The physical mechanism of PDWOEB is further discussed, and some unclear viewpoints are clarified.

Keywords

high surface concentrations plasma doping without any external bias (PDWOEB) point defects room-temperature (RT) diffusion ultra-shallow doping depths 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Numbers 91433119 and 11674004.

References

  1. 1.
    E.M. Handy, M.V. Rao, O.W. Holland, P.H. Chi, K.A. Jones, M.A. Derenge, R.D. Vispute, and T. Venkatesan, Al B and Ga Ion-Implantation Doping of SiC, J. Electron. Mater., 2000, 29, p 1340–1345CrossRefGoogle Scholar
  2. 2.
    C.L. Zhu, Rusli, and P. Zhao, Dual-Channel 4H-SiC Metal Semiconductor Field Effect Transistors, Solid-State Electron., 2007, 51, p 343–346CrossRefGoogle Scholar
  3. 3.
    B.J. Baliga, Prospects for Development of SiC Power Devices, Inst. Phys. Conf. Ser., 1996, 142, p 1Google Scholar
  4. 4.
    L.V. Rozario, L.P. Sadwick, R.J. Hwu, and D.B. King, SiC BGJFET Inverter for High Temperature/Power Applications, in Proc. of Fourth Int. High Temp. Electron. Conf. (HiTec) (1998), p 29Google Scholar
  5. 5.
    C.E. Weitzel, Silicon Carbide High Frequency Devices, Mater. Sci. Forum, 1998, 264-268, p 907–912CrossRefGoogle Scholar
  6. 6.
    H. Matsunami, Current SiC Technology for Power Electronic Devices Beyond Si, Microelectron. Eng., 2006, 83, p 2–4CrossRefGoogle Scholar
  7. 7.
    S. Sriram et al., High-Performance Implanted-Channel SiC MESFETS, IEEE Electron Device Lett., 2011, 32(3), p 243–245CrossRefGoogle Scholar
  8. 8.
    T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier, Doping of SiC by Implantation of Boron and Aluminum, Phys. Status Solidi A, 1997, 162, p 277–298CrossRefGoogle Scholar
  9. 9.
    T. Kimoto, O. Takemura, H. Matsunami, T. Nakata, and M. Inoue, Al+ and B+ Implantations into 6H-SiC Epilayers and Application to PN Junction Diodes, J. Electron. Mater., 1998, 27, p 358–364CrossRefGoogle Scholar
  10. 10.
    R. Hou, Z. Xie, L. Li, X. Xie, X. Xu, X. Fang, L. Tao, W. Xu, N. Ma, Y. He, X. Chen, S. Peng, E. Fu, Z. Yuan, and G. Qin, Room-Temperature Plasma Doping Without Bias Power for Introduction of Fe, Au, Al, Ga, Sn and In into Si, Appl. Phys. A, 2016, 122, p. 1013.Google Scholar
  11. 11.
    R. Hou, X. Fang, L. Li, S. Li, W. Song, X. Xie, Z. Xie, W. Xu, S. Pan, D. Li, C. Xiao, and G. G. Qin, Doping Si, Mg and Ca into GaN Based on Plasma Stimulated Room-Temperature Diffusion, Appl. Phys. A, 2017, 123, p. 393.Google Scholar
  12. 12.
    J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, and N.C. Tran, Plasma Source Ion-Implantation Technique for Surface Modification of Materials, J. Appl. Phys., 1987, 62, p 4591–4596CrossRefGoogle Scholar
  13. 13.
    A. Anders, From Plasma Immersion Ion Implantation to Deposition: A Historical Perspective on Principles and Trends, Surf. Coat. Technol., 2002, 156, p 3–12CrossRefGoogle Scholar
  14. 14.
    A. Anders, Metal Plasma Immersion Ion Implantation and Deposition: A Review, Surf. Coat. Technol., 1997, 93, p 158–167CrossRefGoogle Scholar
  15. 15.
    J. Pelletier and A. Anders, Plasma-Based Ion Implantation and Deposition: A Review of Physics, Technology, and Applications, IEEE Trans. Plasma Sci., 2005, 33(6), p 1944–1959CrossRefGoogle Scholar
  16. 16.
    P.K. Chu, Contamination Issues in Hydrogen Plasma Immersion Ion Implantation Of Silicon—A Brief Review, Surf. Coat. Technol., 2002, 156, p 244–252CrossRefGoogle Scholar
  17. 17.
    F. Yuting, X. Jin, N. Sun, C. Li, Y. An, and J. Liu, Effects of Ni Doping and Structural Defects on Magnetic Properties of Annealed SiC Films, Superlattices Microstruct., 2016, 96, p 267–272CrossRefGoogle Scholar
  18. 18.
    Y. Dou, H. Jin, M. Cao, X. Fang, Z. Hou, and S. Dan Li, Agathopoulos, Structural Stability, Electronic and Optical Properties of Ni-Doped 3C–SiC by First Principles Calculation, J. Alloy. Compd., 2011, 509, p 6117–6122CrossRefGoogle Scholar
  19. 19.
    J. Crofton, P.G. McMullin, J.R. Williams, and M.J. Bozack, High-Temperature Ohmic Contact to n-type 6H-SiC Using Nickel, J. Appl. Phys., 1995, 77, p 1317–1319CrossRefGoogle Scholar
  20. 20.
    G. Oskam, P.C. Searson, and M.W. Cole, Fabrication of n-type 4H–SiC/Ni Junctions Using Electrochemical Deposition, Appl. Phys. Lett., 2000, 76, p 1300–1302CrossRefGoogle Scholar
  21. 21.
    G.R. Fisher and P. Barnes, Towards a Unified View of Polytypism in Silicon Carbide, Phil. Mag. B, 1990, 61, p 217–236CrossRefGoogle Scholar
  22. 22.
    A. Lohrmann, B.C. Johnson, J.C. McCallum, and S. Castelletto, A Review on Single Photon Sources in Silicon Carbide, Rep. Prog. Phys. 2017, 80, p. 034502.Google Scholar
  23. 23.
    S. Oswald and H. Wirth, Core-Level Shifts at B- and Al-Doped 6H-SiC Studied by XPS, Surf. Interface Anal., 1999, 27, p 136–141CrossRefGoogle Scholar
  24. 24.
    E. Stamate, Status and Challenges in Electrical Diagnostics of Processing Plasmas, Surf. Coat. Technol., 2014, 260, p 401–410CrossRefGoogle Scholar
  25. 25.
    S. Soloviev, Y. Gao, X. Wang, and T. Sudarshan, Boron Diffusion into 6H-SiC Through Graphite Mask, J. Electron. Mater., 2001, 30(3), p 224–227CrossRefGoogle Scholar
  26. 26.
    R. Hou, L. Li, X. Fang, Z. Xie, S. Li, W. Song, R. Huang, J. Zhang, Z. Huang, Q. Li, W. Xu, E. Fu, and G.G. Qin, Ambient-Temperature Diffusion and Gettering of Pt Atoms in GaN with Surface Defect Region Under 60Co Gamma or MeV Electron Irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B, 2018, 414, p 74–78.Google Scholar
  27. 27.
    J.D. Weeks, J.C. Tully, and L.C. Kimerling, Theory of Recombination-Enhanced Defect Reactions in Semiconductors, Phys. Rev. B, 1975, 12, p 3286–3292CrossRefGoogle Scholar
  28. 28.
    T. Wada and K. Yasuda, Mechanism of Electron-Beam Doping in Semiconductors, Phys. Rev. B, 1996, 53, p 4770–4781CrossRefGoogle Scholar
  29. 29.
    R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1976Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ruixiang Hou
    • 1
    • 6
  • Lei Li
    • 1
  • Xin Fang
    • 1
  • Hui Zhao
    • 1
  • Yihang Chen
    • 1
  • Ziang Xie
    • 1
  • Guosheng Sun
    • 2
  • Xinhe Zhang
    • 2
  • Yanfei Zhao
    • 3
  • Rong Huang
    • 3
  • Zengli Huang
    • 3
  • Youqin He
    • 4
  • Nongnong Ma
    • 4
  • Jicai Zhang
    • 5
  • Wanjing Xu
    • 1
  • Jinbo Yang
    • 1
  • Chijie Xiao
    • 1
  • G. G. Qin
    • 1
  1. 1.State Key Lab for Mesoscopic Physics, School of PhysicsPeking UniversityBeijingPeople’s Republic of China
  2. 2.Dongguan Tianyu Semiconductor Technology Co., Ltd.DongguanPeople’s Republic of China
  3. 3.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouPeople’s Republic of China
  4. 4.China Electronics Technology Group Corporation No. 46 Research InstituteTianjinPeople’s Republic of China
  5. 5.Department of Physics, College of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  6. 6.SINOPEC Beijing Research Institute of Chemical IndustryBeijingPeople’s Republic of China

Personalised recommendations