Cathodic Cage Plasma Pre-treatment of TiN-Coated AISI-304 Stainless Steel for Enhancement of Mechanical Strength and Wear Resistance

  • H. A. Raza
  • M. Shafiq
  • M. Naeem
  • M. Y. NazEmail author
  • J. C. Díaz-Guillén
  • C. M. Lopez-Badillo


Although austenitic stainless steels (ASSs) are known for their superior corrosion resistance properties, the use of such materials in motion contact parts is limited due to their low wear resistance. Previous studies reveal that titanium nitride (TiN) coating of ASS significantly improves its hardness and surface morphology but not the wear resistance due to weak interfacing with the substrate. Since plasma nitriding is a flexible and multifunctional case-hardening process, an attempt was made to improve the wear resistance of TiN-coated AISI-304 stainless steel by subjecting it to pre-treatment by pulsed DC cathodic cage plasma nitriding (CCPN) in the abnormal glow region. The hardness of the TiN-coated steel samples (with and without CCPN pre-treatment) was measured using Vickers micro-hardness tester. This test revealed maximum hardness of 2284 HV after plasma treatment of TiN-coated steel. The untreated TiN-coated steel exhibited 10.6 times lower hardness than the plasma pre-treated TiN-coated steel (CCPN-TiN). XRD analysis of the untreated TiN-coated steel showed strong diffraction peaks of TiN (311) and (400) in the spectrum, whereas plasma pre-treated sample contained dominant peaks of TiN (111), (200) and (220). The ball-on-disk wear tester was used to investigate the wear behavior of the samples. Very small wear rate and friction coefficient were reported for CCPN-TiN-coated steel. The observed low wear rate was probably due to the development of a subsurface (i.e., nitrided surface) on TiN-coated steel during CCPN pre-treatment.


austenitic stainless steel cathodic cage plasma nitriding phase structure surface hardness TiN-coated steel wear resistance 



The authors are grateful for the financial support from the University Research Fund (URF) 2016-2017 at the Plasma Physics Laboratory, Quaid-I-Azam University, Islamabad.


  1. 1.
    C. Chen, H. Ma, J. Cai, J. Liu, and Y. Zhou, Corrosion Behaviour of Low Alloy Corrosion Resistant Steel in Simulated Concrete Environment, Mater. Res. Innovations, 2014, 18, p S4-285-S284-289Google Scholar
  2. 2.
    S. Wang, W. Cai, J. Li, W. Wei, and J. Hu, A Novel Rapid DC Plasma Nitriding at Low Gas Pressure for 304 Austenitic Stainless Steel, Mater. Lett., 2013, 105, p 47–49CrossRefGoogle Scholar
  3. 3.
    J. Buhagiar, T. Bell, R. Sammons, and H. Dong, Evaluation of the Biocompatibility of S-Phase Layers on Medical Grade Austenitic Stainless Steels, J. Mater. Sci. - Mater. Med., 2011, 22, p 1269–1278CrossRefGoogle Scholar
  4. 4.
    E. Kasprzycka, J. Senatorski, A. Nakonieczny, and T. Babul, Diffusion Layers Produced on Carbon Steel Surface by Means of Vacuum Chromizing Process, J. Mater. Eng. Perform., 2003, 12, p 693–695CrossRefGoogle Scholar
  5. 5.
    M. Yazıcı, H. Kovacı, A.F. Yetim, and A. Çelik, Structural, Mechanical and Tribological Properties of Ti and TiN Coatings on 316L Stainless Steel, Ceram. Int., 2018, 44, p 14195–14201CrossRefGoogle Scholar
  6. 6.
    S. Datta, M. Das, V.K. Balla, S. Bodhak, and V.K. Murugesan, Mechanical, Wear, Corrosion and Biological Properties of Arc Deposited Titanium Nitride Coatings, Surf. Coat. Technol., 2018, 344, p 214–222CrossRefGoogle Scholar
  7. 7.
    A.U. Chaudhry, B. Mansoor, T. Mungole, G. Ayoub, and D.P. Field, Corrosion Mechanism in PVD Deposited Nano-Scale Titanium Nitride Thin Film with Intercalated Titanium for Protecting the Surface of Silicon, Electrochim. Acta, 2018, 264, p 69–82CrossRefGoogle Scholar
  8. 8.
    R.M. Souto and H. Alanyali, Electrochemical Characteristics of Steel Coated with TiN and TiAlN Coatings, Corros. Sci., 2000, 42, p 2201–2211CrossRefGoogle Scholar
  9. 9.
    M.R. Hilton, L.R. Narasimhan, S. Nakamura, M. Salmeron, and G.A. Somorjai, Composition, Morphology and Mechanical Properties of Plasma-Assisted Chemically Vapor-Deposited TiN Films on M2 Tool Steel, Thin Solid Films, 1986, 139, p 247–260CrossRefGoogle Scholar
  10. 10.
    S.J. Bull, P.R. Chalker, C.F. Ayres, and D.S. Rickerby, The Influence of Titanium Interlayers on the Adhesion of Titanium Nitride Coatings Obtained by Plasma-Assisted Chemical Vapour Deposition, Mater. Sci. Eng., A, 1991, 139, p 71–78CrossRefGoogle Scholar
  11. 11.
    J. Shieh and M.H. Hon, Nanostructure and Hardness of Titanium Aluminum Nitride Prepared by Plasma Enhanced Chemical Vapor Deposition, Thin Solid Films, 2001, 391, p 101–108CrossRefGoogle Scholar
  12. 12.
    J.Y. Chen, G.P. Yu, and J.H. Huang, Corrosion Behavior and Adhesion of Ion-Plated Tin Films on AISI, 304 Steel, Mater. Chem. Phys., 2000, 65, p 310–315CrossRefGoogle Scholar
  13. 13.
    A. Nishimoto, H. Nii, R. Narita, and K. Akamatsu, Simultaneous Duplex Process of TiN Coating and Nitriding by Active Screen Plasma Nitriding, Surf. Coat. Technol., 2013, 228, p S558–S562CrossRefGoogle Scholar
  14. 14.
    A. Yazdani, M. Soltanieh, H. Aghajani, and S. Rastegari, Deposition of Nano Sized Titanium Nitride on H11 Tool Steel Using Active Screen Plasma Nitriding Method, J. Nano Res., 2010, 11, p 79–84CrossRefGoogle Scholar
  15. 15.
    B. Subramanian, K. Ashok, and M. Jayachandran, Effect of Substrate Temperature on the Structural Properties of Magnetron Sputtered Titanium Nitride Thin Films with Brush Plated Nickel Interlayer on Mild Steel, Appl. Surf. Sci., 2008, 255, p 2133–2138CrossRefGoogle Scholar
  16. 16.
    A.-H.A. Hussein, M.T. Abdu, E.-S.M. El-Banna, S.E. Soliman, and M.M. Tash, Erratum to: Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels, J. Mater. Eng. Perform., 2016, 25, p 5125CrossRefGoogle Scholar
  17. 17.
    L. Xiao, D. Yan, J. He, L. Zhu, Y. Dong, J. Zhang, and X. Li, Nanostructured TiN Coating Prepared by Reactive Plasma Spraying in Atmosphere, Appl. Surf. Sci., 2007, 253, p 7535–7539CrossRefGoogle Scholar
  18. 18.
    S.-T. Myung, M. Kumagai, R. Asaishi, Y.-K. Sun, and H. Yashiro, Nanoparticle TiN-Coated Type 310S Stainless Steel as Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell, Electrochem. Commun., 2008, 10, p 480–484CrossRefGoogle Scholar
  19. 19.
    L. Chenglong, Y. Dazhi, L. Guoqiang, and Q. Min, Corrosion Resistance and Hemocompatibility of Multilayered Ti/TiN-Coated Surgical AISI, 316L Stainless Steel, Mater. Lett., 2005, 59, p 3813–3819CrossRefGoogle Scholar
  20. 20.
    F. Qi, Y.X. Leng, N. Huang, B. Bai, and P.C. Zhang, Surface Modification of 17-4PH Stainless Steel by DC Plasma Nitriding and Titanium Nitride Film Duplex Treatment, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, 257, p 416–419CrossRefGoogle Scholar
  21. 21.
    A.S. More, W. Jiang, W.D. Brown, and A.P. Malshe, Tool Wear and Machining Performance of cBN–TiN Coated Carbide Inserts and PCBN Compact Inserts in Turning AISI, 4340 Hardened Steel, J. Mater. Process. Technol., 2006, 180, p 253–262CrossRefGoogle Scholar
  22. 22.
    F.F. Xia, C. Liu, F. Wang, M.H. Wu, J.D. Wang, H.L. Fu, and J.X. Wang, Preparation and Characterization of Nano Ni–TiN Coatings Deposited by Ultrasonic Electrodeposition, J. Alloy. Compd., 2010, 490, p 431–435CrossRefGoogle Scholar
  23. 23.
    J. Gerth and U. Wiklund, The Influence of Metallic Interlayers on the Adhesion of PVD TiN Coatings on High-Speed Steel, Wear, 2008, 264, p 885–892CrossRefGoogle Scholar
  24. 24.
    K. Manigandan, T.S. Srivatsan, V.K. Vasudevan, D. Tammana, and B. Poorganji, Erratum to: Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel, J. Mater. Eng. Perform., 2016, 25, p 151CrossRefGoogle Scholar
  25. 25.
    Y.H. Yoo, D.P. Le, J.G. Kim, S.K. Kim, and P. Van Vinh, Corrosion Behavior of TiN, TiAlN, TiAlSiN Thin Films Deposited on Tool Steel in the 3.5 wt% NaCl Solution, Thin Solid Films, 2008, 516, p 3544–3548CrossRefGoogle Scholar
  26. 26.
    V. Malau and S. Subagyo, Effects of Heat Treatment and Titanium Nitride (TiN) Coating Deposited by Sputtering Technique PVD on Duylos 2510 Tool Steel Substrate, Trans Tech Publications, Zurich, 2014, p 666–671Google Scholar
  27. 27.
    B. Podgornik, J. Vižintin, O. Wänstrand, M. Larsson, S. Hogmark, H. Ronkainen, and K. Holmberg, Tribological Properties of Plasma Nitrided and Hard Coated AISI, 4140 Steel, Wear, 2001, 249, p 254–259CrossRefGoogle Scholar
  28. 28.
    I. Efeoglu and A. Celik, Mechanical and Structural Properties of AISI, 8620 Steel TiN Coated, Nitrided and TiN Coated + Nitrided, Mater. Charact., 2001, 46, p 311–316CrossRefGoogle Scholar
  29. 29.
    J. Batista, M. Joseph, C. Godoy, and A. Matthews, Micro-Abrasion Wear Testing of PVD TiN Coatings on Untreated and Plasma Nitrided AISI, H13 Steel, Wear, 2001, 249, p 971–979CrossRefGoogle Scholar
  30. 30.
    F.M. El-Hossary, N.Z. Negm, A.M.A. El-Rahman, M. Hammad, and C. Templier, Duplex Treatment of AISI, 304 Austenitic Stainless Steel Using rf Nitriding and dc Reactive Magnetron Sputtering of Titanium, Surf. Coat. Technol., 2008, 202, p 1392–1400CrossRefGoogle Scholar
  31. 31.
    M. Stoiber, J. Wagner, C. Mitterer, K. Gammer, H. Hutter, C. Lugmair, and R. Kullmer, Plasma-Assisted Pre-treatment for PACVD TiN Coatings on Tool Steel, Surf. Coat. Technol., 2003, 174, p 687–693CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, Z. Chen, L. Wang, W. Wu, and D. Fang, Effect of Heat Treatment at 1300 °C on W Coating Prepared by Double-Glow Plasma on Carbon/Carbon Composite, J. Coat. Technol. Res., 2008, 6, p 237CrossRefGoogle Scholar
  33. 33.
    R. De Sousa, F. De Araújo, L. Gontijo, J. da Costa, and C. Alves, Cathodic Cage Plasma Nitriding (CCPN) of Austenitic Stainless Steel (AISI, 316): Influence of the Different Ratios of the (N2/H2) on the Nitrided Layers Properties, Vacuum, 2012, 86, p 2048–2053CrossRefGoogle Scholar
  34. 34.
    M. Naeem, J. Iqbal, M. Abrar, K.H. Khan, J.C. Díaz-Guillén, C.M. Lopez-Badillo, M. Shafiq, M. Zaka-ul-Islam, and M. Zakaullah, The Effect of Argon Admixing on Nitriding of Plain Carbon Steel in N2 and N2-H2 Plasma, Surf. Coat. Technol., 2018, 350, p 48–56CrossRefGoogle Scholar
  35. 35.
    U. Rehman, M. Shafiq, M. Naeem, H.A. Raza, M. Saleem, and M. Sharif, Enhanced Surface Properties of AISI-304 Using Bi-step Cathodic Cage Plasma Processing, Vacuum, 2018, 151, p 243–246CrossRefGoogle Scholar
  36. 36.
    A. Saeed, A. Khan, F. Jan, M. Abrar, M. Khalid, and M. Zakaullah, Validity of “Sputtering and Re-condensation” Model in Active Screen Cage Plasma Nitriding Process, Appl. Surf. Sci., 2013, 273, p 173–178CrossRefGoogle Scholar
  37. 37.
    K. Lin, X. Li, L. Tian, and H. Dong, Active Screen Plasma Surface Co-alloying of 316 Austenitic Stainless Steel with Both Nitrogen and Niobium for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2015, 40, p 10281–10292CrossRefGoogle Scholar
  38. 38.
    Y. Dong, X. Li, T. Bell, R. Sammons, and H. Dong, Surface Microstructure and Antibacterial Property of an Active-Screen Plasma Alloyed Austenitic Stainless Steel Surface with Cu and N, Biomed. Mater., 2010, 5, p 054105CrossRefGoogle Scholar
  39. 39.
    Y. Dong, X. Li, R. Sammons, and H. Dong, The Generation of Wear-Resistant Antimicrobial Stainless Steel Surfaces by Active Screen Plasma Alloying with N and Nanocrystalline Ag, J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93, p 185–193Google Scholar
  40. 40.
    Y. Dong, X. Li, L. Tian, T. Bell, R.L. Sammons, and H. Dong, Towards Long-Lasting Antibacterial Stainless Steel Surfaces by Combining Double Glow Plasma Silvering with Active Screen Plasma Nitriding, Acta Biomater., 2011, 7, p 447–457CrossRefGoogle Scholar
  41. 41.
    K. Lin, X. Li, L. Tian, and H. Dong, Active Screen Plasma Surface Co-alloying Treatments of 316 Stainless Steel with Nitrogen and Silver for Fuel Cell Bipolar Plates, Surf. Coat. Technol., 2015, 283, p 122–128CrossRefGoogle Scholar
  42. 42.
    M. Naeem, M. Shafiq, M. Zaka-ul-Islam, M.I. Bashir, J.C. Díaz-Guillén, C.M. Lopez-Badillo, and M. Zakaullah, Novel Duplex Cathodic Cage Plasma Nitriding of Non-alloyed Steel Using Aluminum and Austenite Steel Cathodic Cages, J. Alloy. Compd., 2017, 721, p 307–311CrossRefGoogle Scholar
  43. 43.
    M. Naeem, M. Shafiq, M. Zaka-ul-Islam, J.C. Díaz-Guillén, C.M. Lopez-Badillo, N. Ullah, and M. Zakaullah, Improved Surface Properties of AISI-304 by Novel Duplex Cathodic Cage Plasma Nitriding, Mater. Lett., 2017, 189, p 213–216CrossRefGoogle Scholar
  44. 44.
    M.I. Bashir, M. Shafiq, M. Naeem, M. Zaka-ul-Islam, J.C. Díaz-Guillén, C.M. Lopez-Badillo, and M. Zakaullah, Enhanced Surface Properties of Aluminum by PVD-TiN Coating Combined with Cathodic Cage Plasma Nitriding, Surf. Coat. Technol., 2017, 327, p 59–65CrossRefGoogle Scholar
  45. 45.
    M. Naeem, M. Shafiq, M. Zaka-ul-Islam, A. Ashiq, J.C. Díaz-Guillén, M. Shahzad, and M. Zakaullah, Enhanced Surface Properties of Plain Carbon Steel Using Plasma Nitriding with Austenitic Steel Cathodic Cage, Mater. Des., 2016, 108, p 745–753CrossRefGoogle Scholar
  46. 46.
    M. Naeem, M. Shafiq, M. Zaka-ul-Islam, N. Nawaz, J.C. Díaz-Guillén, and M. Zakaullah, Effect of Cathodic Cage Size on Plasma Nitriding of AISI, 304 Steel, Mater. Lett., 2016, 181, p 78–81CrossRefGoogle Scholar
  47. 47.
    M. Naeem, M. Zaka-ul-Islam, M. Shafiq, M. Bashir, J. Díaz-Guillén, and M. Zakaullah, Influence of Cathodic Cage Diameter on Mechanical Properties of Plasma Nitrided AISI, 304 steel, Surf. Coat. Technol., 2017, 309, p 738–748CrossRefGoogle Scholar
  48. 48.
    W.J. Chou, G.P. Yu, and J.H. Huang, Mechanical Properties of TiN Thin Film Coatings on 304 Stainless Steel Substrates, Surf. Coat. Technol., 2002, 149, p 7–13CrossRefGoogle Scholar
  49. 49.
    P. Panjan, M. Čekada, M. Panjan, and D. Kek-Merl, Growth Defects in PVD hard Coatings, Vacuum, 2009, 84, p 209–214CrossRefGoogle Scholar
  50. 50.
    G.I. Grigorov, K.G. Grigorov, M. Stojanova, J.L. Vignes, J.P. Langeron, P. Denjean, and L. Ranno, Iron Diffusion from Pure Fe Substrate into TiN Buffer Layers, Physica C, 1995, 241, p 397–400CrossRefGoogle Scholar
  51. 51.
    M. Divakar, V.K. Agarwal, and S.N. Singh, Effect of the Material Surface Hardness on the Erosion of AISI316, Wear, 2005, 259, p 110–117CrossRefGoogle Scholar
  52. 52.
    F. Zhang and M. Yan, Microstructure and Wear Resistance of In Situ Formed Duplex Coating Fabricated by Plasma Nitriding Ti Coated 2024 Al Alloy, J. Mater. Sci. Technol., 2014, 30, p 1278–1283CrossRefGoogle Scholar
  53. 53.
    G.B. Both, A.S. Rocha, G.R. Santos, and T.K. Hirsch, An Investigation on the Suitability of Different Surface Treatments Applied to a DIN X100CrMoV8-1-1 for Cold Forming Applications, Surf. Coat. Technol., 2014, 244, p 142–150CrossRefGoogle Scholar
  54. 54.
    H. Dogan, F. Findik, and A. Oztarhan, Comparative Study of Wear Mechanism of Surface Treated AISI, 316L Stainless Steel, Ind. Lubr. Tribol., 2003, 55, p 76–83CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • H. A. Raza
    • 1
  • M. Shafiq
    • 1
  • M. Naeem
    • 2
  • M. Y. Naz
    • 3
    Email author
  • J. C. Díaz-Guillén
    • 4
  • C. M. Lopez-Badillo
    • 5
  1. 1.Department of PhysicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of PhysicsWomen University of Azad Jammu and KashmirBaghPakistan
  3. 3.Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  4. 4.CONACYT, Corporación Mexicana de Investigación en MaterialesSaltilloMexico
  5. 5.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations