Journal of Materials Engineering and Performance

, Volume 27, Issue 12, pp 6552–6563 | Cite as

Effect of Lithium on the Discharge and Corrosion Behavior of Mg-3 wt.% Al Alloy as the Anode for Seawater Activated Battery

  • Ri-chu Wang
  • Qi Li
  • Nai-guang WangEmail author
  • Chao-qun Peng
  • Yan Feng


The discharge and corrosion behavior of Mg-3 wt.% Al alloys added with different contents of lithium in 3.5 wt.% NaCl aqueous solution is studied by electrochemical methods and microstructure characterization. The results indicate that adding 4 wt.% lithium severely promotes the self-corrosion and the addition of 12 wt.% lithium is not valuable to the spalling of discharge products. In contrast, doping Mg-3 wt.% Al with 8 wt.% lithium negatively shifts the discharge potentials and inhibits the self-discharge, attributed to the dual-phase structure of α-Mg plus β-Li that removes the discharge products and favors the uniform dissolution in the course of discharge. Moreover, the multi-pass rolling with 40% reduction could tailor the microstructure of Mg-3 wt.% Al-8 wt.% Li alloy and further enhance its discharge activity, even though the corrosion resistance is slightly reduced. This means that the rolled Mg-3 wt.% Al-8 wt.% Li sheet is suitable to serve as the anode for seawater activated battery.


discharge performance Mg-3% Al alloy seawater activated battery self-corrosion 



Authors acknowledge the financial support of the National Nature Science Foundation of China (No. 51401243), a Special Financial Grant from the China Postdoctoral Science Foundation (No. 2015T80883), and China Postdoctoral Science Foundation (No. 2014M552151).


  1. 1.
    H. Zhao, P. Bian, and D. Ju, Electrochemical Performance of Magnesium Alloy and Its Application on the Sea Water Battery, J. Environ. Sci., 2009, 21, p S88–S91CrossRefGoogle Scholar
  2. 2.
    N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge and Corrosion Performance of AP65 Magnesium Alloy in Simulated Seawater: Effect of Temperature, J. Mater. Eng. Perform., 2014, 23(12), p 4374–4384CrossRefGoogle Scholar
  3. 3.
    K. Yu, X. Tan, Y. Hu, F. Chen, and S. Li, Microstructure Effects on the Electrochemical Corrosion Properties of Mg-4.1% Ga-2.2% Hg Alloy as the Anode for Seawater-Activated Batteries, Corros. Sci., 2011, 53(5), p 2035–2040CrossRefGoogle Scholar
  4. 4.
    Ø. Hasvold and N. Størkersen, Electrochemical Power Sources for Unmanned Underwater Vehicles Used in Deep Sea Survey Operations, J. Power Sources, 2001, 96(1), p 252–258CrossRefGoogle Scholar
  5. 5.
    N. Wang, R. Wang, C. Peng, and Y. Feng, Enhancement of the Discharge Performance of AP65 Magnesium Alloy Anodes by Hot Extrusion, Corros. Sci., 2014, 81(4), p 85–95CrossRefGoogle Scholar
  6. 6.
    Y. Feng, R. Wang, C. Peng, and N. Wang, Influence of Mg21Ga5Hg3 Compound on Electrochemical Properties of Mg-5%Hg-5%Ga Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19(1), p 154–159CrossRefGoogle Scholar
  7. 7.
    S. Firas, B.L. Ki, and L.W. Lin, Water Activated Disposable and Long Shelf Life Microbatteries, Sens. Actuators, A, 2004, 111, p 79–86CrossRefGoogle Scholar
  8. 8.
    K.V. Rao, Performance Evaluation of Mg-AgCl Batteries for Underwater Propulsion, J. Def. Sci., 2012, 51(2), p 161–170CrossRefGoogle Scholar
  9. 9.
    F. Guadarrama-Muñoz, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, Electrochemical Study on Magnesium Anodes in NaCl and CaSO4-Mg(OH)2 Aqueous Solutions, Electrochim. Acta, 2006, 51(8), p 1820–1830CrossRefGoogle Scholar
  10. 10.
    Ø. Hasvold, T. Lian, E. Haakaas, N. Størkersen, O. Perelman, and S. Cordier, CLIPPER: A Long-Range, Autonomous Underwater Vehicle Using Magnesium Fuel and Oxygen from the Sea, J. Power Sources, 2004, 136(2), p 232–239CrossRefGoogle Scholar
  11. 11.
    R. Udhayan and D.P. Bhatt, On the Corrosion Behaviour of Magnesium and its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 63(1), p 103–107CrossRefGoogle Scholar
  12. 12.
    Y. Shi, C. Peng, Y. Feng, R. Wang, and N. Wang, Microstructure and Electrochemical Corrosion Behavior of Extruded Mg-Al-Pb-La Alloy as Anode for Seawater-Activated Battery, Mater. Des., 2017, 124, p 24–33CrossRefGoogle Scholar
  13. 13.
    R. Udhayan, N. Muniyandi, and P.B. Mathur, Studies on Magnesium and Its Alloys in Battery Electrolytes, Br. Corros. J., 2013, 27, p 68–71CrossRefGoogle Scholar
  14. 14.
    D. Cao, L. Wu, Y. Sun, G. Wang, and Y. Lv, Electrochemical Behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in Sodium Chloride Solution, J. Power Sources, 2008, 177(2), p 624–630CrossRefGoogle Scholar
  15. 15.
    D. Cao, L. Wu, G. Wang, and Y. Lv, Electrochemical Oxidation Behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in Sodium Chloride Solution, J. Power Sources, 2008, 183(2), p 799–804CrossRefGoogle Scholar
  16. 16.
    B. Jugović, M. Gvozdenović, J. Stevanović, T. Trišović, and B. Grgur, Corrosion Behavior of Magnesium, Aluminum and Zinc as Anodic Materials in Chloride Based Electrolytes for Use in Primary and Secondary Electrochemical Power Sources, Mater. Des., 2009, 30(8), p 3291–3294CrossRefGoogle Scholar
  17. 17.
    L. Wang, B.P. Zhang, and T. Shinohara, Corrosion Behavior of AZ91 Magnesium Alloy in Dilute NaCl Solutions, Mater. Des., 2010, 31(2), p 857–863CrossRefGoogle Scholar
  18. 18.
    A. Boby, A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Mechanical Characterization and Corrosion Behavior of Newly Designed Sn and Y added AZ91 Alloy, Mater. Des., 2015, 88, p 871–879CrossRefGoogle Scholar
  19. 19.
    Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, Performance of Mg-14Li-1Al-0.1Ce as Anode for Mg-Air Battery, Fuel Energy Abstr, 2011, 196(4), p 2346–2350Google Scholar
  20. 20.
    N. Wang, R. Wang, C. Peng, Y. Feng, and B. Chen, Effect of Hot Rolling and Subsequent Annealing on Electrochemical Discharge Behavior of AP65 Magnesium Alloy as Anode for Seawater Activated Battery, Corros. Sci., 2012, 64(6), p 17–27CrossRefGoogle Scholar
  21. 21.
    M. Andrei, F.D. Gabriele, P.L. Bonora, and D. Scantlebury, Corrosion Behaviour of Magnesium Sacrificial Anodes in Tap Water, Mater. Corros., 2015, 54(1), p 5–11CrossRefGoogle Scholar
  22. 22.
    N. Wang, R. Wang, C. Peng, Y. Feng, and X. Zhang, Influence of Aluminium and Lead on Activation of Magnesium as Anode, Trans. Nonferrous Met. Soc. China, 2010, 20, p 1403–1411CrossRefGoogle Scholar
  23. 23.
    N. Wang, R. Wang, C. Peng, and Y. Feng, Influence of Zinc on Electrochemical Discharge Activity of Mg-6%Al-5%Pb Anode, J. Cent. South Univ., 2012, 19(1), p 9–16CrossRefGoogle Scholar
  24. 24.
    P. Wang, J. Li, Y. Guo, Z. Yang, F. Xia, and J. Wang, Effect of Tin Addition on Microstructure and Electrochemical Properties of Rolled AZ61-Sn Magnesium Anodic Materials, Rare Met., 2011, 30(6), p 639–643CrossRefGoogle Scholar
  25. 25.
    M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Effects of Microstructure on Discharge Behavior of AZ91 Alloy as Anode for Mg-Air Battery, Mater. Trans., 2014, 55(8), p 1202–1207CrossRefGoogle Scholar
  26. 26.
    N. Wang, R. Wang, C. Peng, C. Hu, Y. Feng, and B. Peng, Research Progress of Magnesium Anodes and Their Applications in Chemical Power Sources, Trans. Nonferrous Met. Soc. China, 2014, 24(8), p 2427–2439CrossRefGoogle Scholar
  27. 27.
    R. Balasubramanian, A. Veluchamy, N. Venkatakrishnan, and R. Gangadharan, Electrochemical Characterization of Magnesium/Silver Chloride Battery, J. Power Sources, 1995, 56(2), p 197–199CrossRefGoogle Scholar
  28. 28.
    N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-In Alloys As Anodes for Mg-Air Battery, Electrochim. Acta, 2014, 149, p 193–205CrossRefGoogle Scholar
  29. 29.
    N. Wang, R. Wang, C. Peng, and Y. Feng, Effect of Manganese on Discharge and Corrosion Performance of Magnesium Alloy AP65 as Anode for Seawater-Activated Battery, Corros. Sci., 2012, 68(5), p 388–397CrossRefGoogle Scholar
  30. 30.
    Y. Lv, M. Liu, Y. Xu, D. Cao, and J. Feng, The Electrochemical Behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in Sodium Chloride Solution, J. Power Sources, 2013, 239(225), p 265–268CrossRefGoogle Scholar
  31. 31.
    Y. Lv, Y. Xu, and D. Cao, The Electrochemical Behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in Sodium Chloride Solution, J. Power Sources, 2011, 196(20), p 8809–8814CrossRefGoogle Scholar
  32. 32.
    N. Wang, R. Wang, W. Xiong, J. Zhang, and Y. Feng, Electrochemical Discharge Performance of Mg-Al-Pb-Ce-Y Alloy as Anode for Mg-Air Battery, J. Mater. Chem. A, 2016, 4, p 8658–8668CrossRefGoogle Scholar
  33. 33.
    N. Wang, R. Wang, Y. Feng, W. Xiong, J. Zhang, and M. Deng, Discharge and Corrosion Behaviour of Mg-Li-Al-Ce-Y-Zn Alloy as the Anode for Mg-Air Battery, Corros. Sci., 2016, 112, p 13–24CrossRefGoogle Scholar
  34. 34.
    M.C. Lin, C.Y. Tsai, and J.Y. Uan, Electrochemical Behaviour and Corrosion Performance of Mg-Li-Al-Zn Anodes with High Al Composition, Corros. Sci., 2009, 51(10), p 2463–2472CrossRefGoogle Scholar
  35. 35.
    Z. Shi, M. Liu, D. Naik, and J.L. Gole, Electrochemical Properties of Li-Mg Alloy Electrodes for Lithium Batteries, J. Power Sources, 2001, 92(1), p 70–80CrossRefGoogle Scholar
  36. 36.
    Y. Song, D. Shan, R. Chen, and E. Han, Corrosion Characterization of Mg-8Li alloy in NaCl Solution, Corros. Sci., 2009, 51(5), p 1087–1094CrossRefGoogle Scholar
  37. 37.
    Y. Pan, G. Wu, X. Cheng, Z. Zhang, M. Li, S. Ji, and Z. Huang, Galvanic Corrosion Behaviour of Carbon Fibre Reinforced Polymer/Magnesium Alloys Coupling, Corros. Sci., 2015, 98, p 672–677CrossRefGoogle Scholar
  38. 38.
    H. Xiong, K. Yu, X. Yin, Y. Dai, Y. Yan, and H. Zhu, Effects of Microstructure on the Electrochemical Discharge Behavior of Mg-6wt%Al-1wt%Sn Alloy as Anode for Mg-Air Primary Battery, J. Alloys Compd., 2017, 708, p 652–661CrossRefGoogle Scholar
  39. 39.
    J. Li, B. Zhang, Q. Wei, N. Wang, and B. Hou, Electrochemical Behavior of Mg-Al-Zn-In Alloy as Anode Materials in 3.5 wt.% NaCl Solution, Electrochim. Acta, 2017, 238, p 156–167CrossRefGoogle Scholar
  40. 40.
    M. Deng, R. Wang, Y. Feng, N. Wang, and L. Wang, Corrosion and Discharge Performance of Mg-9%Al-2.5%Pb Alloy as Anode for Seawater Activated Battery, Trans. Nonferrous Met. Soc. China, 2016, 26(8), p 2144–2151CrossRefGoogle Scholar
  41. 41.
    M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456CrossRefGoogle Scholar
  42. 42.
    R. Balasubramanian, A. Veluchamy, and N. Venkatakrishnan, Gasometric Corrosion-Rate Studies of Magnesium Alloy in Magnesium Batteries, J. Power Sources, 1994, 52(2), p 305–308CrossRefGoogle Scholar
  43. 43.
    Y.N. Lin, H.Y. Wu, G.Z. Zhou, C.H. Chiu, and S. Lee, Mechanical and Anisotropic Behaviors of Mg-Li-Zn Alloy Thin Sheets, Mater. Des., 2008, 29(10), p 2061–2065CrossRefGoogle Scholar
  44. 44.
    X. Meng, R. Wu, M. Zhang, L. Wu, and C. Cui, Microstructures and Properties of Superlight Mg-Li-Al-Zn Wrought Alloys, J. Alloys Compd., 2009, 486(1–2), p 722–725CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ri-chu Wang
    • 1
  • Qi Li
    • 1
  • Nai-guang Wang
    • 2
    Email author
  • Chao-qun Peng
    • 1
  • Yan Feng
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina

Personalised recommendations