Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 123–139 | Cite as

Workability Characteristics and Deformation Mechanisms of Die-Cast AM60 and AZ91 Magnesium Alloys: Correlation with Processing Maps

  • Dharmendra ChalasaniEmail author
  • Mukesh Kumar Jain
  • Sumanth Shankar
  • Fateh Fazeli
Article
  • 67 Downloads

Abstract

Thermo-mechanical deformation behavior of the die-cast AM60 and AZ91 alloys was assessed by performing uniaxial compression tests on Gleeble 3800 simulator under different temperatures and strain rate conditions. Low-temperature deformation behavior of both alloys was accessed at 25, 100, and 150 °C, at the strain rates of 0.1 and 1 s−1. Processing maps at a true strain of 0.5 were generated to study the intrinsic hot workability of AM60 and AZ91 alloys. Optimum processing windows were identified, and the evolution of microstructures and textures was correlated with the imposed deformation conditions. The processing map for the AM60 alloy exhibited three dynamic recrystallization (DRX) domains in the ranges: (1) 320-400 °C and 0.2-1.5 s−1, (1A) 300-325 °C and 0.1-0.2 s−1, and (2) 360-400 °C and 3-5 s−1. In Domain 1, DRX occurred predominantly by pyramidal slip and recovery mechanisms by cross-slip as confirmed by the randomized textures. Deformation in Domain 1A is by the combination of basal and prismatic slip. In Domain 2, dynamic recovery was a softening mechanism controlled by the climb. The processing map for AZ91 alloy exhibited two DRX domains in the ranges: (1) 260-310 °C and 0.1-0.5 s−1 and (2) 325-350 °C and 0.8-3 s−1. The rate-controlling mechanism was climb by lattice self-diffusion in Domain 1 and by grain boundary self-diffusion in Domain 2. Both alloys exhibited flow instability at 200 and 250 °C, and therefore, they were unsuitable for processing at these temperatures.

Keywords

deformation Mg-Al alloy microstructure processing map thermo-mechanical effects 

Notes

Acknowledgments

The authors express their gratitude to Automotive Partnership Canada (APC) program of Natural Science and Engineering Research Council (NSERC) of Canada. The authors would like to acknowledge the support of the Resource for the Innovation of Engineered Materials program at CanmetMATERIALS of Natural Resources Canada. The authors are especially thankful to Mr. Tyler Smith of CanmetMATERIALS for performing uniaxial compression tests using Gleeble thermo-mechanical simulator. The authors are grateful to Fiat Chrysler Automotive (FCA) for technical collaboration and supply of die-cast AM60 and AZ91 samples. The authors also thank Mr. Steve Logan of FCA for the helpful technical discussions. Lastly, authors would like to thank Ms. Vicky Jarvis of McMaster Analytical X-ray Diffraction facility for her assistance with the XRD work.

References

  1. 1.
    M.M. Avadesian and H. Baker, Magnesium and Magnesium Alloys, ASM speciality Handbook, ASM, Materials Park, Ohio, 1999, p 12–25Google Scholar
  2. 2.
    G.E. Totten, L. Xie, and K. Funatani, Handbook of Mechanical Alloy Design, Marcel Dekker Inc., New York, 2004, p 487–538Google Scholar
  3. 3.
    N. Moscovitch, D. Elezier, and E. Aghion, The Effect of High Pressure Die Casting Process Characteristic on the Properties and Performance of Advanced Mg Alloys, Proceedings of Magnesium Technology, 2005, p 357–363.Google Scholar
  4. 4.
    S.R. Agnew, M.H. Yoo, and C.N. Tomé, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49, p 4277–4289.  https://doi.org/10.1016/S1359-6454(01)00297-X CrossRefGoogle Scholar
  5. 5.
    H. Borkar and M. Pekguleryuz, Microstructure and texture Evolution in Mg-1%Mn-Sr Alloys During Extrusion, J. Mater. Sci., 2013, 48, p 1436–1447.  https://doi.org/10.1007/s10853-012-6896-y CrossRefGoogle Scholar
  6. 6.
    A. Sadeghi and M. Pekguleryuz, Effect of Pre-deformation Anneal on the Microstructure and Texture Evolution of Mg-3Al-1Zn-0.7Sr Alloy During hot Extrusion, J. Mater. Sci., 2012, 47, p 5374–5384.  https://doi.org/10.1007/s10853-012-6416-0 CrossRefGoogle Scholar
  7. 7.
    L. Guo and F. Fujita, Effect of Equivalent Strain and Redundant Shear Strain on Microstructure and Texture Evolution During Hot Rolling in Mg-3Al-1Zn Alloys, J. Mater. Sci., 2012, 47, p 6213–6219.  https://doi.org/10.1007/s10853-012-6522-z CrossRefGoogle Scholar
  8. 8.
    E. Schmid and W. Boas, Plasticity of Crystals: With Special Reference to Metals, Chapman and Hall, London, 1935, p 140–141Google Scholar
  9. 9.
    A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207CrossRefGoogle Scholar
  10. 10.
    S.W. Xu, N. Matsumoto, S. Kamado, T. Houra, and Y. Kojima, Effect of Mg17Al12 Precipitates on the Microstructural Changes and Mechanical Properties of Hot Compressed AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 523, p 47–52.  https://doi.org/10.1016/j.msea.2009.05.032 CrossRefGoogle Scholar
  11. 11.
    H. Ding, L. Liu, S. Kamado, W. Ding, and Y. Kojima, Study of the Microstructure, Texture, and Tensile Properties of As-Extruded AZ91 Magnesium Alloy, J. Alloys Compd., 2008, 456, p 400–406.  https://doi.org/10.1016/j.jallcom.2007.02.045 CrossRefGoogle Scholar
  12. 12.
    K. Màthis, J. Gubicza, and N.H. Nam, Microstructure and Mechanical Behavior of AZ91Mg Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2008, 394, p 194–199.  https://doi.org/10.1016/j.jallcom.2004.10.050 CrossRefGoogle Scholar
  13. 13.
    X.F. Wang, J.Z. Zhao, J. He, and Z.Q. Hu, Hot rolling Characteristics of Spray-Formed AZ91 Magnesium Alloy, T. Nonferr. Metal Soc., 2007, 17, p 238–243.  https://doi.org/10.1016/S1003-6326(07)60078-8 CrossRefGoogle Scholar
  14. 14.
    A.S.J. Al-Zubaydi, A.P. Zhilyaev, S.C. Wang, P. Kucita, and P.A.S. Reed, Evolution of Microstructure in AZ91 Alloy Processed by High-Pressure Torsion, J. Mater. Sci., 2016, 51, p 3380–3389.  https://doi.org/10.1007/s10853-015-9652-2 CrossRefGoogle Scholar
  15. 15.
    M. Mu, Z. Zhi-min, Z. Bao-hong, and D. Jin, Flow Behaviors and Processing Maps of As-Cast and As-Homogenized AZ91 Alloy, J. Alloys Compd., 2012, 513, p 112–117.  https://doi.org/10.1016/j.jallcom.2011.09.102 CrossRefGoogle Scholar
  16. 16.
    Y. Xu, L. Hu, and Y. Sun, Processing Map and Kinetic Analysis for Hot Deformation of an As-Cast AZ91D Magnesium Alloy, Mater. Sci. Eng. A, 2013, 578, p 402–407.  https://doi.org/10.1016/j.msea.2013.04.110 CrossRefGoogle Scholar
  17. 17.
    A.R. Maldar, G.R. Ebrahimi, M. Haghshenas, M. Jahazi, and P. Bocher, thermomechanical Characterization of Mg-9Al-1Zn Alloy Using Power Dissipation Maps, JMEPEG, 2013, 22, p 3306–3314.  https://doi.org/10.1007/s11665-013-0616-x CrossRefGoogle Scholar
  18. 18.
    Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451Google Scholar
  19. 19.
    Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, Materials Park, OH, 2015, ISBN 978-1-62708-091-0Google Scholar
  20. 20.
    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Unstable Flow During Supratransus Working of Ti-6Al-4V, Mater. Lett., 2001, 47, p 133–139.  https://doi.org/10.1016/S0167-577X(00)00224-X CrossRefGoogle Scholar
  21. 21.
    C. Dharmendra, K.P. Rao, F. Zhao, Y.V.R.K. Prasad, N. Hort, and K.U. Kainer, Effect of Aluminum on Microstructural Evolution During Hot Deformation of TX32 Magnesium Alloy, J. Mater. Sci., 2014, 49, p 5885–5898.  https://doi.org/10.1007/s10853-014-8300-6 CrossRefGoogle Scholar
  22. 22.
    C. Dharmendra, K.P. Rao, M.K. Jain, and Y.V.R.K. Prasad, Role of Loading Direction on Compressive Deformation Behavior of Extruded ZK60 Alloy Plate in a Wide Range of Temperature, J. Alloys Compd., 2018, 744, p 289–300.  https://doi.org/10.1016/j.jallcom.2018.02.032 CrossRefGoogle Scholar
  23. 23.
    X. Zhou, R.R. Liu, H.T. Zhou, and W.X. Jiang, A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy, JMEPEG, 2017, 26, p 2423–2429.  https://doi.org/10.1007/s11665-017-2670-2 CrossRefGoogle Scholar
  24. 24.
    R.Y. Li, Y.H. Duan, L.S. Ma, and S. Chen, Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy, JMEPEG, 2017, 26, p 2439–2451.  https://doi.org/10.1007/s11665-017-2681-z CrossRefGoogle Scholar
  25. 25.
    B. Chen, W.-M. Zhou, S. Li, X.-L. Li, and C. Lu, Hot Compression Deformation behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, JMEPEG, 2013, 22, p 2458–2466.  https://doi.org/10.1007/s11665-013-0568-1 CrossRefGoogle Scholar
  26. 26.
    Y. Lou, H. Chen, C. Ke, and M. Long, Hot tensile Deformation Characteristics and Processing Map of Extruded AZ80Mg Alloys, JMEPEG, 2014, 23, p 1904–1914.  https://doi.org/10.1007/s11665-014-0957-0 CrossRefGoogle Scholar
  27. 27.
    Y. Riddle, L. Barber, and M. Makhlouf, Characterizing Solidification by Non-equilibrium Thermal Analysis, Magnesium Technology, H.I. Kaplan, Ed., The Minerals, Metals and Materials Society, Warrendale, 2003, p 101–106Google Scholar
  28. 28.
    I.J. Polmear, Light Alloys, Metallurgy of the Light Metals, 2nd ed., Edward Arnold, London, 1989, p 237–249Google Scholar
  29. 29.
    J.D. Robson, N. Stanford, and M.R. Barnett, Effect of Precipitate Shape on Slip and Twinning in Magnesium Alloys, Acta Mater., 2011, 59, p 1945–1956.  https://doi.org/10.1016/j.actamat.2010.11.060 CrossRefGoogle Scholar
  30. 30.
    J. Koike and R. Ohyama, Geometrical Criterion for the Activation of Prismatic slip in AZ61Mg Alloy Sheets Deformed at Room Temperature, Acta Mater., 2005, 53, p 1963–1972.  https://doi.org/10.1016/j.actamat.2005.01.008 CrossRefGoogle Scholar
  31. 31.
    D. Hull and D.J. Bacon, Introductions to Dislocations, Butterworth-Heinemann, Oxford, 2001Google Scholar
  32. 32.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274.  https://doi.org/10.1016/S0921-5093(97)00424-3 CrossRefGoogle Scholar
  33. 33.
    J.J. Jonas, C.M. Sellars, and W.J. McG, Tegart, Strength and Structure Under Hot Working Conditions, Metall. Rev., 1969, 14, p 1–24.  https://doi.org/10.1179/mtlr.1969.14.1.1 CrossRefGoogle Scholar
  34. 34.
    H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, p 44Google Scholar
  35. 35.
    WJMcG Tegart, Activation Energies for High Temperature Creep of Polycrystalline Magnesium, Acta Metall., 1961, 9, p 614–617CrossRefGoogle Scholar
  36. 36.
    J.E. Flinn and D.E. Munson, Stress Dependence of the Transition Behaviour in Multi-mechanism Creep Reactions: With Special Reference to Zinc, Philos. Mag., 1964, 10, p 861–870.  https://doi.org/10.1080/14786436408225389 CrossRefGoogle Scholar
  37. 37.
    S.S. Vagarali and T.G. Langdon, Deformation Mechanism in H.C.P. Metals at Elevated Temperatures-II, Creep Behaviour of a Mg-0.8% Al Solid Solution Alloy, Acta Metall., 1982, 30, p 1157–1170.  https://doi.org/10.1016/0001-6160(82)90009-8 CrossRefGoogle Scholar
  38. 38.
    T. Obara, H. Yoshinga, and S. Morozumi, \( \left\{ {11\bar{2}2} \right\}\;\left\langle {11\bar{2}3} \right\rangle \)lip System in Magnesium, Acta Metall., 1973, 21, p 845–853.  https://doi.org/10.1016/0001-6160(73)90141-7
  39. 39.
    J.R. Morris, J. Scharaff, K.M. Ho, D.E. Turner, Y.Y. Ye, and M.H. Yoo, Prediction of a 1122 Hcp Stacking Fault Using a Modified Generalized Stacking-Fault Calculation, Philos. Mag., 1997, 76, p 1065–1077.  https://doi.org/10.1080/01418619708200015 CrossRefGoogle Scholar
  40. 40.
    T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Softening and Dynamic Recrystallization in Magnesium Single Crystals During c-Axis Compression, Acta Mater., 2012, 60, p 537–545.  https://doi.org/10.1016/j.actamat.2011.10.013 CrossRefGoogle Scholar
  41. 41.
    A. Mwembela, E.B. Konopleva, and H.J. McQueen, Microstructural Development in Mg Alloy AZ31 During Hot Working, Scr. Mater., 1997, 37, p 1789–1795.  https://doi.org/10.1016/S1359-6462(97)00344-8 CrossRefGoogle Scholar
  42. 42.
    F.J. Humphreys, The Nucleation of Recrystallization at Second Phase Particles in Deformed Aluminum, Acta Metall., 1977, 25, p 1323–1344.  https://doi.org/10.1016/0001-6160(77)90109-2 CrossRefGoogle Scholar
  43. 43.
    S.W. Xu, S. Kamado, N. Matsumoto, T. Honna, and Y. Kojima, Recrystallization Mechanism of As-Cast AZ91 magnesium Alloy During Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527, p 52–60.  https://doi.org/10.1016/j.msea.2009.08.062 CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources 2018

Authors and Affiliations

  • Dharmendra Chalasani
    • 1
    • 2
    Email author
  • Mukesh Kumar Jain
    • 2
  • Sumanth Shankar
    • 2
  • Fateh Fazeli
    • 3
  1. 1.University of New BrunswickFrederictonCanada
  2. 2.Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada
  3. 3.CanmetMATERIALS, Natural Resources CanadaHamiltonCanada

Personalised recommendations