Journal of Materials Engineering and Performance

, Volume 27, Issue 12, pp 6676–6689 | Cite as

Wear-Resistant Al/SiC-Gr Hybrid Metal Matrix Composite Fabricated by Multiple Annealing and Roll Bonding

  • M. ReihanianEmail author
  • A. Baharloo
  • S. M. Lari Baghal


The wear-resistant Al/SiC-Gr hybrid composite with a good combination of strength and ductility is fabricated by multiple annealing and roll bonding. The challenge is that graphite acts as a soft lubricating material and prevents the bonding between the layers. In order to evaluate the bond strength, the peeling test is used after cold roll bonding of Al strips with and without the addition of particles under different conditions. Results show that the bond strength increases with increasing the reduction in thickness, decreasing Gr content and performing the post-rolling annealing. During the multiple annealing and roll bonding process, the tensile strength increases with the cost of a small decrease in elongation. A relatively uniform distribution of particles is achieved at the last stages of the process. The Al/SiC-Gr hybrid composite exhibits an improved wear resistance compared with the monolithic Al and Al/SiC composite produced under the same conditions. The conclusion is drawn that a good combination of wear and mechanical properties can be achieved in the hybrid composite that has less amount of Gr.


annealing bond strength hybrid composite mechanical properties roll bonding wear 



Financial support provided by Shahid Chamran University of Ahvaz through the Grant No. 96-3-02-16670 is gratefully appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    J.W. Kaczmar, K. Pietrzak, and W. Włosiński, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106(1-3), p 58–67CrossRefGoogle Scholar
  2. 2.
    D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65(15-16), p 2526–2540CrossRefGoogle Scholar
  3. 3.
    D.J. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., 1994, 39(1), p 1–23CrossRefGoogle Scholar
  4. 4.
    A. Dorri Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, Functional Metal Matrix Composites: Self-Lubricating, Self-healing, and Nanocomposites-An Outlook, JOM, 2014, 66(6), p 872–881CrossRefGoogle Scholar
  5. 5.
    S.V. Prasad and R. Asthana, Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations, Tribol. Lett., 2004, 17(3), p 445–453CrossRefGoogle Scholar
  6. 6.
    S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, and F.M. Varachia, Aluminum Matrix Composites for Industrial Use: Advances and Trends, Procedia Manuf., 2017, 7, p 178–182CrossRefGoogle Scholar
  7. 7.
    N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, Berlin, 2006Google Scholar
  8. 8.
    A.P. Sannino and H.J. Rack, Dry Sliding Wear of Discontinuously Reinforced Aluminum Composites: Review and Discussion, Wear, 1995, 189(1-2), p 1–19CrossRefGoogle Scholar
  9. 9.
    L. Cao, Y. Wang, and C.K. Yao, The Wear Properties of an SiC-Whisker-Reinforced Aluminium Composite, Wear, 1990, 140(2), p 273–277CrossRefGoogle Scholar
  10. 10.
    S. Barnes and I.R. Pashby, Machining of Aluminium Based Metal Matrix Composites, Appl. Compos. Mater., 1995, 2(1), p 31–42CrossRefGoogle Scholar
  11. 11.
    E. Omrani, A.D. Moghadam, P.L. Menezes, and P.K. Rohatgi, Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review, Int. J. Adv. Manuf. Technol., 2016, 83(1), p 325–346CrossRefGoogle Scholar
  12. 12.
    J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Matrix Composites Reinforced with Ceramic Materials Under the Influence of Controllable Variables, Ceram. Int., 2016, 42(1, Part A), p 56–81CrossRefGoogle Scholar
  13. 13.
    J. Leng, L. Jiang, Q. Zhang, G. Wu, D. Sun, and Q. Zhou, Study of Machinable SiC/Gr/Al Composites, J. Mater. Sci., 2008, 43(19), p 6495–6499CrossRefGoogle Scholar
  14. 14.
    J. Singh, Fabrication Characteristics and Tribological Behavior of Al/SiC/Gr Hybrid Aluminum Matrix Composites: A Review, Friction, 2016, 4(3), p 191–207CrossRefGoogle Scholar
  15. 15.
    S. Basavarajappa, G. Chandramohan, K. Mukund, M. Ashwin, and M. Prabu, Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites, J. Mater. Eng. Perform., 2006, 15(6), p 668–674CrossRefGoogle Scholar
  16. 16.
    A.M. Hassan, G.M. Tashtoush, and J.A. Al-Khalil, Effect of Graphite and/or Silicon Carbide Particles Addition on the Hardness and Surface Roughness of Al-4 wt.% Mg Alloy, J. Compos. Mater., 2007, 41(4), p 453–465CrossRefGoogle Scholar
  17. 17.
    J. Leng, G. Wu, Q. Zhou, Z. Dou, and X. Huang, Mechanical Properties of SiC/Gr/Al Composites Fabricated by Squeeze Casting Technology, Scr. Mater., 2008, 59(6), p 619–622CrossRefGoogle Scholar
  18. 18.
    M. Kok, Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites, J. Mater. Process. Technol., 2005, 161(3), p 381–387CrossRefGoogle Scholar
  19. 19.
    J. Hashim, L. Looney, and M.S.J. Hashmi, The Enhancement of Wettability of SiC Particles in Cast Aluminium Matrix Composites, J. Mater. Process. Technol., 2001, 119(1-3), p 329–335CrossRefGoogle Scholar
  20. 20.
    S. Simões, A.S. Ramos, F. Viana, O. Emadinia, M.T. Vieira, and M.F. Vieira, Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering, J. Mater. Eng. Perform., 2016, 25(10), p 4394–4401CrossRefGoogle Scholar
  21. 21.
    A. Shabani and M.R. Toroghinejad, Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes, J. Mater. Eng. Perform., 2015, 24(12), p 4746–4754CrossRefGoogle Scholar
  22. 22.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227CrossRefGoogle Scholar
  23. 23.
    B.L. Li, N. Tsuji, and N. Kamikawa, Microstructure Homogeneity in Various Metallic Materials Heavily Deformed by Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2006, 423(1-2), p 331–342CrossRefGoogle Scholar
  24. 24.
    E. Bagherpour, M. Reihanian, and H. Miyamoto, Tailoring Particle Distribution Non-Uniformity and Grain Refinement In Nanostructured Metal Matrix Composites Fabricated by Severe Plastic Deformation (SPD): A Correlation with Flow Stress, J. Mater. Sci., 2017, 52(6), p 3436–3446CrossRefGoogle Scholar
  25. 25.
    M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloy. Compd., 2010, 492(1-2), p 231–235CrossRefGoogle Scholar
  26. 26.
    M. Reihanian, E. Bagherpour, and M.H. Paydar, On the Achievement of Uniform Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding, Mater. Lett., 2013, 91, p 59–62CrossRefGoogle Scholar
  27. 27.
    M. Alizadeh and M.H. Paydar, Fabrication of Al/SiCP Composite Strips by Repeated Roll-Bonding (RRB) Process, J. Alloy. Compd., 2009, 477(1-2), p 811–816CrossRefGoogle Scholar
  28. 28.
    M. Alizadeh, Strengthening Mechanisms in Particulate Al/B4C Composites Produced by Repeated Roll Bonding Process, J. Alloy. Compd., 2011, 509(5), p 2243–2247CrossRefGoogle Scholar
  29. 29.
    R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, An Alternative Method of Processing MMCs by CAR Process, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2010, 527(10-11), p 2720–2724CrossRefGoogle Scholar
  30. 30.
    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, CAR Process: A Technique for Significant Enhancement of As-Cast MMC Properties, Mater. Charact., 2011, 62(12), p 1228–1234CrossRefGoogle Scholar
  31. 31.
    S. Amirkhanlou, R. Jamaati, B. Niroumand, and M.R. Toroghinejad, Fabrication and Characterization of Al/SiCp Composites by CAR Process, Mater. Sci. Eng. A, 2011, 528(13-14), p 4462–4467CrossRefGoogle Scholar
  32. 32.
    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Comparison of the Microstructure and Mechanical Properties of As-Cast A356/SiC MMC Processed by ARB and CAR Methods, J. Mater. Eng. Perform., 2012, 21(7), p 1249–1253CrossRefGoogle Scholar
  33. 33.
    M. Reihanian, F.K. Hadadian, and M.H. Paydar, Fabrication of Al–2 vol.% Al2O3/SiC Hybrid Composite via Accumulative Roll Bonding (ARB): an Investigation of the Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2014, 607, p 188–196CrossRefGoogle Scholar
  34. 34.
    M. Alizadeh, H.A. Beni, M. Ghaffari, and R. Amini, Properties of High Specific Strength Al–4 wt.% Al2O3/B4C Nano-Composite Produced by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 427–432CrossRefGoogle Scholar
  35. 35.
    A. Fattah-alhosseini, M. Naseri, and M.H. Alemi, Corrosion Behavior Assessment of Finely Dispersed and Highly Uniform Al/B4C/SiC Hybrid Composite Fabricated via Accumulative Roll Bonding Process, J. Manuf. Process., 2016, 22, p 120–126CrossRefGoogle Scholar
  36. 36.
    M. Shamanian, M. Mohammadnezhad, and J. Szpunar, Production of High-Strength Al/Al2O3/WC Composite by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2014, 23(9), p 3152–3158CrossRefGoogle Scholar
  37. 37.
    H. Farajzadeh Dehkordi, M.R. Toroghinejad, and K. Raeissi, Fabrication of Al/Al2O3/TiC Hybrid Composite by Anodizing and Accumulative Roll Bonding Processes and Investigation of its Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2013, 585, p 460–467CrossRefGoogle Scholar
  38. 38.
    M. Reihanian, S. Fayezipour, and S.M. Lari, Baghal, Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior, J. Mater. Eng. Perform., 2017, 26(4), p 1908–1919CrossRefGoogle Scholar
  39. 39.
    V. Yousefi Mehr, M.R. Toroghinejad, and A. Rezaeian, The Effects of Oxide Film and Annealing Treatment on the Bond Strength of Al-Cu Strips in Cold Roll Bonding Process, Mater. Des., 2014, 53, p 174–181CrossRefGoogle Scholar
  40. 40.
    L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001CrossRefGoogle Scholar
  41. 41.
    R. Jamaati and M.R. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108CrossRefGoogle Scholar
  42. 42.
    N. Bay, C. Clemensen, O. Juelstorp, and T. Wanheim, Bond Strength in Cold Roll Bonding, CIRP Ann.—Manuf. Technol., 1985, 34(1), p 221–224CrossRefGoogle Scholar
  43. 43.
    M.Z. Quadir, A. Wolz, M. Hoffman, and M. Ferry, Influence of Processing Parameters on the Bond Toughness of Roll-Bonded Aluminium Strip, Scr. Mater., 2008, 58(11), p 959–962CrossRefGoogle Scholar
  44. 44.
    M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009Google Scholar
  45. 45.
    T.H. Courtney, Mechanical Behavior of Materials, McGraw Hill Custom Publisher, New York, 2000Google Scholar
  46. 46.
    M. Naseri, M. Reihanian, and E. Borhani, Bonding Behavior During Cold Roll-Cladding of Tri-Layered Al/brass/Al Composite, J. Manuf. Process., 2016, 24(Part 1), p 125–137CrossRefGoogle Scholar
  47. 47.
    R. Jamaati and M.R. Toroghinejad, Effect of Friction, Annealing Conditions and Hardness on the Bond Strength of Al/Al Strips Produced by Cold Roll Bonding Process, Mater. Des., 2010, 31(9), p 4508–4513CrossRefGoogle Scholar
  48. 48.
    N. Bay, Cold Welding. Part I: Characteristics, Bounding Mechanisms, Bond Strength, Metal Constr., 1986, 18, p 369–372Google Scholar
  49. 49.
    J.W. Ha Mohamed, Mechanism of Solid State Pressure Welding, Weld. Res. Suppl., 1975, 9, p 302–310Google Scholar
  50. 50.
    M. Alizadeh and M.H. Paydar, Study on the Effect of Presence of TiH2 Particles on the Roll Bonding Behavior of Aluminum Alloy Strips, Mater. Des., 2009, 30(1), p 82–86CrossRefGoogle Scholar
  51. 51.
    R. Jamaati and M.R. Toroghinejad, Effect of Al2O3 Nano-Particles on the Bond Strength in CRB Process, Mater. Sci. Eng. A, 2010, 527(18), p 4858–4863CrossRefGoogle Scholar
  52. 52.
    M.A. Soltani, R. Jamaati, and M.R. Toroghinejad, The Influence of TiO2 Nano-Particles on Bond Strength of Cold Roll Bonded Aluminum Strips, Mater. Sci. Eng. A, 2012, 550, p 367–374CrossRefGoogle Scholar
  53. 53.
    A. Yazdani, E. Salahinejad, J. Moradgholi, and M. Hosseini, A New Consideration on Reinforcement Distribution in the Different Planes of Nanostructured Metal Matrix Composite Sheets Prepared by Accumulative Roll Bonding (ARB), J. Alloy. Compd., 2011, 509(39), p 9562–9564CrossRefGoogle Scholar
  54. 54.
    M. Rezayat, A. Akbarzadeh, and A. Owhadi, Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2012, 43(6), p 2085–2093 (in English)CrossRefGoogle Scholar
  55. 55.
    M. Alizadeh and M. Talebian, Fabrication of Al/Cup Composite by Accumulative Roll Bonding Process and Investigation of Mechanical Properties, Mater. Sci. Eng. A, 2012, 558, p 331–337CrossRefGoogle Scholar
  56. 56.
    O. Ghaderi, M.R. Toroghinejad, and A. Najafizadeh, Investigation of Microstructure and Mechanical Properties of Cu-SiCP Composite Produced by Continual Annealing and Roll-Bonding Process, Mater. Sci. Eng. A, 2013, 565, p 243–249CrossRefGoogle Scholar
  57. 57.
    H. Sekine and R. Chent, A Combined Microstructure Strengthening Analysis of SiCp/Al Metal Matrix Composites, Composites, 1995, 26(3), p 183–188CrossRefGoogle Scholar
  58. 58.
    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process, Mater. Sci. Eng. A, 2011, 528(4-5), p 2143–2148CrossRefGoogle Scholar
  59. 59.
    S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511CrossRefGoogle Scholar
  60. 60.
    S. Mahdavi and F. Akhlaghi, Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method, Tribol. Lett., 2011, 44(1), p 1–12CrossRefGoogle Scholar
  61. 61.
    S. Suresha and B.K. Sridhara, Effect of Addition of Graphite Particulates on the Wear Behaviour in Aluminium–Silicon Carbide–Graphite Composites, Mater. Des., 2010, 31(4), p 1804–1812CrossRefGoogle Scholar
  62. 62.
    S. Suresha and B.K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates, Compos. Sci. Technol., 2010, 70(11), p 1652–1659CrossRefGoogle Scholar
  63. 63.
    P. Ravindran, K. Manisekar, S. Vinoth Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nano-Composites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456CrossRefGoogle Scholar
  64. 64.
    L. Jinfeng, J. Longtao, W. Gaohui, T. Shoufu, and C. Guoqin, Effect of Graphite Particle Reinforcement on Dry Sliding Wear of SiC/Gr/Al Composites, Rare Metal Mater. Eng., 2009, 38(11), p 1894–1898CrossRefGoogle Scholar
  65. 65.
    P.S. Bains, S.S. Sidhu, and H.S. Payal, Fabrication and Machining of Metal Matrix Composites: a Review, Mater. Manuf. Process., 2016, 31(5), p 553–573CrossRefGoogle Scholar
  66. 66.
    M.R. Rosenberger, C.E. Schvezov, and E. Forlerer, Wear of Different Aluminum Matrix Composites Under Conditions that Generate a Mechanically Mixed Layer, Wear, 2005, 259(1), p 590–601CrossRefGoogle Scholar
  67. 67.
    P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, and R. Narayanasamy, Application of Factorial Techniques to Study the Wear of Al Hybrid Composites with Graphite Addition, Mater. Des., 2012, 39, p 42–54CrossRefGoogle Scholar
  68. 68.
    P. Ravindran, K. Manisekar, R. Narayanasamy, and P. Narayanasamy, Tribological Behaviour of Powder Metallurgy-Processed Aluminium Hybrid Composites with the Addition of Graphite Solid Lubricant, Ceram. Int., 2013, 39(2), p 1169–1182CrossRefGoogle Scholar
  69. 69.
    M. Hosseini, A. Yazdani, and H.D. Manesh, Al 5083/SiCp Composites Produced by Continual Annealing and Roll-Bonding, Mater. Sci. Eng. A, 2013, 585, p 415–421CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations