Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 117–122 | Cite as

Development and Mechanical Properties of In Situ Al3Ti-Reinforced Nanostructured AA6061 via Mechanical Alloying

  • Versha Goyal
  • Rahul Ravi
  • S. R. Bakshi
  • P. R. SoniEmail author
Article
  • 40 Downloads

Abstract

Mechanical alloying (MA) was used to disperse 10 wt.% titanium powder in AA6061 powder. The resultant powder was degassed, and differential scanning calorimetry was performed to determine the temperature for formation of titanium aluminide (Al3Ti). The MA powder was characterized by field emission scanning electron microscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Subsequently, the MA powder was consolidated by spark plasma sintering (SPS) at 500 °C under a pressure of 50 MPa. XRD and x-ray energy-dispersive spectroscopy of spark plasma sintered compact revealed in situ formation of Al3Ti. TEM micrographs of spark plasma sintered sample exhibited Al nanograins (average size 50 nm) in the AA6061 matrix along with the dispersed Al3Ti (average size 200 nm). Hardness, yield strength and compressive strength of the SPSed samples were also evaluated and compared with AA6061.

Keywords

AA6061 intermetallic Al3Ti mechanical alloying (MA) spark plasma sintering (SPS) 

References

  1. 1.
    C.S. Ramesh, A.R.A. Khan, N. Ravikumar, and P. Savanprabhu, Prediction of Wear Coefficient of Al6061-TiO2 Composites, Wear, 2005, 259(1–6), p 602–608CrossRefGoogle Scholar
  2. 2.
    B. Guo, J. Yi, S. Ni, R. Shen, and M. Song, Factors Affecting the Microstructure and Mechanical Properties of Ti-Al3Ti Core-Shell-Structured Particle-Reinforced Al Matrix Composites, Philosophical Magazine, 2016, 96(12), p 1197–1211CrossRefGoogle Scholar
  3. 3.
    P. Krizik, M. Balog, M. Nosko, M.V.C. Riglos, J. Dvorak, and O. Bajana, Ultrafine-Grained Al Composites Reinforced with in-situ Al3Ti Filaments, Mater. Sci. Eng. A, 2016, 657, p 6–14CrossRefGoogle Scholar
  4. 4.
    Y. Sun, The Effect of Ti Addition and Aging on Wear Behavior of AlMgSi Alloys Reinforced with in situ Al3Ti Particles, J. Mater. Eng. Perform., 2013, 22(1), p 162–169CrossRefGoogle Scholar
  5. 5.
    P.K. Mirchandani and R.C. Benn, Experimental High Modulus Elevated Temperature Al-Ti Based Alloys by Mechanical Alloying, Sp. Age Met. Technol., 1988, 2, p 188Google Scholar
  6. 6.
    S.L. Pramod, S.R. Bakshi, and B.S. Murty, Aluminum-Based Cast In situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24(6), p 2185–2207CrossRefGoogle Scholar
  7. 7.
    J.R. Pickens, Aluminium Powder Metallurgy Technology for High-Strength Applications, J. Mater. Sci., 1981, 16(6), p 1437–1457CrossRefGoogle Scholar
  8. 8.
    S.K.B. Lee, S. Kim, S.J. Kim, “Advances in Powder Metallurgy and Particulate Materials,” MPIF and APMI, Princeton, NJ, USA, n.d.Google Scholar
  9. 9.
    S.I.K.J.W. Pyun, Creep Properties of Mechanically Alloyed Oxide Dispersed Al-4 wt.% Mg Alloys, J. Korean Inst. Met. Mater., 1995, 33(6), p 814–820Google Scholar
  10. 10.
    G.J. Hildeman and M.J. Koczak, High Strength Powder Metallurgy Aluminum Alloys. II, Toronto, Canada, 1317 Oct. 1985, 1985, p 1986.Google Scholar
  11. 11.
    T.G. Nieh, C.A. Henshall, and J. Wadsworth, Superplasticity at High Strain Rates in a SiC Whisker Reinforced A1 Alloy, Scr. Metall., 1984, 18(12), p 1405–1408CrossRefGoogle Scholar
  12. 12.
    N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, J. Nanomater., 2012, 2012.Google Scholar
  13. 13.
    Y.Y. Chen, H.B. Yu, D.L. Zhang, and L.H. Chai, Effect of Spark Plasma Sintering Temperature on Microstructure and Mechanical Properties of an Ultrafine Grained TiAl Intermetallic Alloy, Mater. Sci. Eng. A, 2009, 525(1–2), p 166–173CrossRefGoogle Scholar
  14. 14.
    A. Khalil, A.S. Hakeem, and N. Saheb, Optimization of Process Parameters in Spark Plasma Sintering Al6061 and Al2124 Aluminum Alloys, Adv. Mater. Res., 2013, 2011(328–330), p 1517–1522Google Scholar
  15. 15.
    T. Mousavi, F. Karimzadeh, M.H. Abbasi, and M.H. Enayati, Investigation of Ni Nanocrystallization and the Effect of Al2O3 Addition by High-Energy Ball Milling, J. Mater. Process. Technol., 2008, 204(1–3), p 125–129CrossRefGoogle Scholar
  16. 16.
    P.R. Soni, Mechanical Alloying: Fundamentals and Applications, Cambridge International Science Publishing, 2000Google Scholar
  17. 17.
    F. Zhang, L. Lu, and M.O. Lai, Grain Growth and Recrystallization of Nanocrystalline Al3Ti Prepared by Mechanical Alloying, J. Mater. Sci., 2003, 8, p 613–619CrossRefGoogle Scholar
  18. 18.
    X. Wang, A. Jha, and R. Brydson, In situ Fabrication of Al3Ti Particle Reinforced Aluminium Alloy Metal-Matrix Composites, Mater. Sci. Eng. A, 2004, 364(1–2), p 339–345. 10.1016/j.msea.2003.08.049 CrossRefGoogle Scholar
  19. 19.
    V.A. Chianeh, H.R.M. Hosseini, and M. Nofar, Micro Structural Features and Mechanical Properties of Al-Al3Ti Composite Fabricated by In-situ Powder Metallurgy Route, J. Alloys Compd., 2009, 473(1–2), p 127–132CrossRefGoogle Scholar
  20. 20.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti-Al System, Metall. Trans. A, 1992, 23(8), p 2081–2090CrossRefGoogle Scholar
  21. 21.
    R.E. Smallman and A.H.W. Ngan, Physical Metallurgy and Advanced Materials Engineering, Elsevier, Amsterdam, 2007Google Scholar
  22. 22.
    M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51(4), p 427–556CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Versha Goyal
    • 1
  • Rahul Ravi
    • 2
  • S. R. Bakshi
    • 2
  • P. R. Soni
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringMalaviya National Institute of TechnologyJaipurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations