Advertisement

The Compactibility of Unsaturated Titanium Hydride Powders

  • Yuhang Wei
  • Chunming Wang
  • Yeguang Zhang
  • Libo Mei
  • Sufen Xiao
  • Yungui Chen
Article
  • 37 Downloads

Abstract

In this study, the effects of phase composition and hydrogen content on the compactibility of the titanium hydride powders are investigated. The crushing strength and the XRD patterns were performed. From the results of the green density, it is clear that the compressibility of the unsaturated hydride titanium powder is higher than that of TiH2. The results of the compression tests indicate that the crushing strength of unsaturated hydride titanium powder is markedly higher than that of the TiH2 and pure Ti. The relative mass fraction of each phase of the unsaturated hydride titanium powder was analyzed by Rietveld refinement of the XRD patterns. The phase composition with high compactibility of the unsaturated hydride titanium powder contains a lot of TiH1.5 and a small amount of α-Ti and TiH. There is a suitable range for each phase: TiH1.5 (70-73 wt.%), α-Ti (13-18 wt.%) and TiH (11-15 wt.%).

Keywords

compactibility crushing strength phase composition powder metallurgy titanium hydride 

References

  1. 1.
    O. Ivasishin and V. Moxson, Low-cost titanium hydride powder metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications, M. Qian and H.F. Froes, Ed., Butterworth Heinemann, Kidlington, 2015, p 117–148CrossRefGoogle Scholar
  2. 2.
    V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson, Industrial Application of Titanium Hydride Powder, Met. Powder Rep., 2017, 72(1), p 30–38CrossRefGoogle Scholar
  3. 3.
    Y. Zheng, X. Yao, Y. Su, and D.L. Zhang, High Strength Titanium with a Bimodal Microstructure Fabricated by Thermomechanical Consolidation of a Nanocrystalline TiH2 Powder, Mater. Sci. Eng. A., 2017, 686, p 11–18CrossRefGoogle Scholar
  4. 4.
    I. Paulin, Synthesis and Characterization of Al Foams Produced by Powder Metallurgy Route Using Dolomite and Titanium Hydride as a Foaming Agents, Mater. Technol., 2014, 48(6), p 943–947Google Scholar
  5. 5.
    I.M. Robertson and G.B. Schaffer, Comparison of Sintering of Titanium and Titanium Hydride Powders, Powder Metall., 2010, 53(1), p 12–19CrossRefGoogle Scholar
  6. 6.
    D.W. Lee, H.S. Lee, J.H. Park, S.M. Shin, and J.P. Wang, Sintering of Titanium Hydride Powder Compaction, Procedia Manuf., 2015, 2, p 550–557CrossRefGoogle Scholar
  7. 7.
    V.V. Joshi, C. Lavender, V. Moxson, V. Duz, E. Nyberg, and K.S. Well, Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock, J. Mater. Eng. Perform., 2013, 22(4), p 995–1003CrossRefGoogle Scholar
  8. 8.
    Y.N. Zhang, C.M. Wang, Y.G. Zhang, P. Cheng, Y.H. Wei, S.F. Xiao, and Y.G. Chen, Fabrication of Low-Cost Ti-1Al-8V-5Fe by Powder Metallurgy with TiH2 and FeV80 Alloy, Mater. Manuf. Process., 2017, 32(16), p 1869–1873CrossRefGoogle Scholar
  9. 9.
    O.M. Ivasishin, D.G. Savvakin, F.H. Froes, V.C. Mokson, and K.A. Bondareva, Synthesis of Alloy Ti-6Al-4V with Low Residual Porosity by a Powder Metallurgy Method, Powder. Metall. Met. C+, 2002, 41(7–8), p 382–390CrossRefGoogle Scholar
  10. 10.
    O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin, Diffusion During Powder Metallurgy Synthesis of Titanium Alloys, Defect. Diffus. Forum., 2008, 277, p 177–185CrossRefGoogle Scholar
  11. 11.
    B. Sharma, S.K. Vajpai, and K. Ameyama, Preparation of Strong and Ductile Pure Titanium via Two-Step Rapid Sintering of TiH2 Powder, J. Alloys Compd., 2016, 683, p 51–55CrossRefGoogle Scholar
  12. 12.
    C.M. Wang, Y.N. Zhang, S.F. Xiao, and Y.G. Chen, Sintering Densification of Titanium Hydride Powders, Mater. Manuf. Process., 2017, 32(5), p 517–522CrossRefGoogle Scholar
  13. 13.
    C.M. Wang, L. Pan, Y.N. Zhang, S.F. Xiao, and Y.G. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Eng., 2016, 41(33), p 14836–14841CrossRefGoogle Scholar
  14. 14.
    C.M. Wang, Y.G. Zhang, Y.H. Wei, L.B. Mei, S.F. Xiao, and Y.G. Chen, XPS Study of the Deoxidization Behavior of Hydrogen in TiH2 Powders, Powder Technol., 2016, 302, p 423–425CrossRefGoogle Scholar
  15. 15.
    O.D. Neikov, D.V. Lotsko, and V.G. Gopienko, Powder Characterization and Testing, Handbook of Non-ferrous Metal Powders, O.D. Neikov, S.S. Naboychenko, and G. Dowson, Ed., Elsevier, Oxford, 2009, p 7–44CrossRefGoogle Scholar
  16. 16.
    S. Lampman, Compressibility and Compactibility of Metal Powders, ASM Handbook, Vol. 7Powder Metal Technologies and Applications (ASM International, 1998), pp. 704–716Google Scholar
  17. 17.
    K.A. Nazari, A. Nouri, and T. Hilditch, Compressibility of a Ti-Based Alloy with Varying Amounts of Surfactant Prepared by High-Energy Ball Milling, Powder Technol., 2015, 279, p 33–41CrossRefGoogle Scholar
  18. 18.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, and Y. Zhang, Powder Metallurgy of Titanium—Past, Present, and Future, Int. Mater. Rev., 2017, 63, p 407–459CrossRefGoogle Scholar
  19. 19.
    J. Capus, Titanium Powder Metallurgy at POWDERMET 2015: Past, Present and Future, Met. Powder Rep., 2016, 71(1), p 25–27CrossRefGoogle Scholar
  20. 20.
    M. Qian, Some New Development in Titanium Powder Metallurgy, Int. J. Powder. Metall., 2011, 47(6), p 47–48Google Scholar
  21. 21.
    C. Machio, R. Mahaka, and H.K. Chikwanda, Consolidation of Titanium Hydride Powders During the Production of Titanium PM Parts: The Effect of Die Wall Lubricants, Mater. Des., 2016, 90, p 757–766CrossRefGoogle Scholar
  22. 22.
    H. Leuenberger, The Compressibility and Compactibility of Powder Systems, Int. J. Pharm., 1982, 12(1), p 41–55CrossRefGoogle Scholar
  23. 23.
    L. Bolzonia, E.M. Ruiz-Navasb, and E. Gordo, Quantifying the Properties of Low-Cost Powder Metallurgy Titanium Alloys, Mater. Sci. Eng. A, 2017, 687, p 47–53CrossRefGoogle Scholar
  24. 24.
    L. Bolzonia, E.M. Ruiz-Navasb, and E. Gordo, Understanding the Properties of Low-Cost Iron-Containing Powder Metallurgy Titanium Alloys, Mater. Des., 2016, 110, p 317–323CrossRefGoogle Scholar
  25. 25.
    W. Schatt and K.P. Wieters, Powder Metallurgy, Processing and Materials, EPMA-European Powder Metallurgy Association, Brussels, 1997, p 61–65Google Scholar
  26. 26.
    I. Paulin, B. Šuštaršič, V. Kevorkijan, S.D. Škapin, and M. Jenko, Synthesis of Aluminium Foams by the Powder-Metallurgy Process: Compacting of Precursors, Mater. Tehnol., 2011, 45(1), p 13–19Google Scholar
  27. 27.
    S. Verma, S. Rani, S. Kumar, and M.A.M. Khan, Rietveld Refinement, Micro-structural, Optical and Thermal Parameters of Zirconium Titanate Composites, Ceram. Int., 2018, 44(2), p 1653–1661CrossRefGoogle Scholar
  28. 28.
    X. Zhou, D. Liu, H.L. Bu, L.L. Deng, H.M. Liu, P. Yuan, P.X. Du, and H.Z. Song, XRD-Based Quantitative Analysis of Clay Minerals Using Reference Intensity Ratios, Mineral Intensity Factors, Rietveld, and Full Pattern Summation Methods: A Critical Review, Solid. Earth. Sci., 2018, 3(1), p 16–29CrossRefGoogle Scholar
  29. 29.
    S.D. Luo, Y.F. Yang, G.B. Schaffer, and M. Qian, Warm Die Compaction and Sintering of Titanium and Titanium Alloy Powders, J. Mater. Process. Technol., 2014, 214(3), p 660–666CrossRefGoogle Scholar
  30. 30.
    A. Hadadzadeh, M.A. Whitney, M.A. Wells, and S.F. Corbin, Analysis of Compressibility Behavior and Development of a Plastic Yield Model for Uniaxial Die Compaction of Sponge Titanium Powder, J. Mater. Process. Technol., 2017, 243, p 92–99CrossRefGoogle Scholar
  31. 31.
    S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Effect of Particle Morphology and Size on Roll Compaction of Ti-Based Powders, Powder Technol., 2014, 264, p 310–319CrossRefGoogle Scholar
  32. 32.
    M.T. Jia and D.L. Zhang, Warm compaction of titanium and titanium alloy powders, Titanium Powder Metallurgy: Science, Technology and Applications, M. Qian and H.F. Froes, Ed., Butterworth Heinemann, Kidlington, 2015, p 183–200CrossRefGoogle Scholar
  33. 33.
    Y.G. Zhang, C.M. Wang, Y. Liu, S.P. Liu, S.F. Xiao, and Y.G. Chen, Surface Characterizations of TiH2 Powders Before and After Dehydrogenation, Appl. Surf. Sci., 2017, 410, p 177–185CrossRefGoogle Scholar
  34. 34.
    I. Paulin, C. Donik, D. Mandrino, M. Vončina, and M. Jenko, Surface Characterization of Titanium Hydride Powder, Vacuum, 2011, 86(6), p 608–613CrossRefGoogle Scholar
  35. 35.
    T.M. Marcelo, V. Livramento, M.V. de Oliveira, and M.H. Carvalho, Microstructural Characterization and Interactions in Ti- and TiH2-Hydroxyapatite Vacuum Sintered Composites, Mat. Res., 2006, 9(1), p 65–71CrossRefGoogle Scholar
  36. 36.
    C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron X-Ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330CrossRefGoogle Scholar
  37. 37.
    G. Chen, K.D. Liss, G. Auchterlonie, H. Tang, and P. Cao, Dehydrogenation and Sintering of TiH2: An In Situ Study, Metall. Mater. Trans. A, 2017, 48(6), p 2949–2959CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yuhang Wei
    • 1
  • Chunming Wang
    • 1
  • Yeguang Zhang
    • 2
  • Libo Mei
    • 2
  • Sufen Xiao
    • 1
  • Yungui Chen
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.School of Aeronautics and AstronauticsSichuan UniversityChengduChina

Personalised recommendations