Journal of Materials Engineering and Performance

, Volume 27, Issue 9, pp 4392–4404 | Cite as

Investigation on Microstructural Evolutions and Mechanical Properties of P92 Steel During Thermal Processing

  • Jichao Wang
  • Pulin NieEmail author
  • Shangfei Qiao
  • O. A. Ojo
  • Chengwu Yao
  • Zhuguo Li
  • Jian Huang


The evolution of the microstructure of P92 steel during heat processing has a significant effect on the final performance of steel products and is thus an area of critical interest. Accordingly, the grain growth behavior of austenite and δ-ferrite changes in P92 steel is comprehensively investigated in this study through thermodynamic calculations and physical simulation. The results show that the AC1, AC3 and γδ transformation temperatures of P92 steel are 841 °C, 878 °C and 1095 °C, respectively, which are comparable to the measured values of 850 °C, 879 °C and 1175 °C, respectively. When the temperature exceeds the AC1 temperature, the austenite grain size increases with increasing temperature and longer holding times, and the growth rate of austenite grains increases with higher temperatures but decreases with holding time at a certain temperature. A model that shows the austenite grain growth kinetics is established: Dn − D 0 n  =  2.03 × 1016exp(− 498,770/RT)t, in which the time exponent n decreases from 4.52 to 2.11 with an increase in temperature from 1000 °C to 1200 °C due to the reduced pinning effect resultant of the dissolution of precipitates, M23C6, VX and NbX at 887 °C, 1073 °C and 1200 °C, respectively. The formation of δ-ferrite at 1200 °C when held for 600 s and 1300 °C when held for 60 ~ 600 s causes a smaller austenite grain size. The relationship between the evolution of the microstructure of P92 steel and the mechanical properties is also studied. The results show that the prior austenite grain size has an inverse relationship with impact energy and ultimate tensile strength at 620 °C, while the presence of soft δ-ferrite leads to a reduction in the microhardness, impact energy and ultimate tensile strength at 620 °C.


δ-ferrite austenite grain growth mechanical properties P92 steel physical simulation thermodynamic calculations 



Financial support provided by the National Natural Science Foundation of China [Grant No. 51775338] is acknowledged. We would also like to acknowledge the valuable advice and support for the thermodynamic calculations and physical simulation in this study by Dr. Feng Sun and Mr. Yihua Chen.


  1. 1.
    A. Chatterjee, A. Dutta, M.B. Sk, R. Mitra, A.K. Bhaduri, and D. Chakrabarti, Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel, Metall. Mater. Trans. A, 2017, 48, p 2410–2424CrossRefGoogle Scholar
  2. 2.
    T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr-1.8 W-0.5Mo-VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRefGoogle Scholar
  3. 3.
    X. Xu, G.D. West, J.A. Siefert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48, p 5396–5414CrossRefGoogle Scholar
  4. 4.
    S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, and T.Q. Liu, The Growth Behavior of Austenite Grain in the Heating Process of 300 M Steel, Mater. Sci. Eng. A, 2011, 528, p 4967–4972CrossRefGoogle Scholar
  5. 5.
    Y.K. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessel. Pip., 2009, 86, p 585–592CrossRefGoogle Scholar
  6. 6.
    F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane, Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels, Int. J. Press. Vessel. Pip., 2010, 87, p 598–604CrossRefGoogle Scholar
  7. 7.
    B.A. Shassere, Y. Yamamoto, and S.S. Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200CrossRefGoogle Scholar
  8. 8.
    R. Kishore, R.N. Singh, T.K. Sinha, and B.P. Kashyap, The Morphology and Ageing Behaviour of δ-Ferrite in a Modified 9Cr-1Mo Steel, J. Nucl. Mater., 1992, 195, p 198–204CrossRefGoogle Scholar
  9. 9.
    K.S. Chandravathi, K. Laha, K.B.S. Rao, and S.L. Mannan, Microstructure and Tensile Properties of Modified 9Cr-1Mo Steel (Grade 91), Mater. Sci. Technol., 2001, 17, p 559–565CrossRefGoogle Scholar
  10. 10.
    B.S. Rho, H.U. Hong, and S.W. Nam, The Fatigue Crack Initiation at the Interface Between Matrix and δ-Ferrite in 304L Stainless Steel, Scr. Mater., 1998, 39, p 1407–1412CrossRefGoogle Scholar
  11. 11.
    Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Prediction Model for the Austenite Grain Growth in a Hot Rolled Dual Phase Steel, Mater. Des., 2012, 36, p 275–278CrossRefGoogle Scholar
  12. 12.
    S. Illescas, J. Fernández, and J.M. Guilemany, Kinetic Analysis of the Austenitic Grain Growth in HSLA Steel with a Low Carbon Content, Mater. Lett., 2008, 62, p 3478–3480CrossRefGoogle Scholar
  13. 13.
    R.M. Miranda and M.A. Fortes, Austenite Grain Growth, Microstructure and Hardness in the Heat-Affected Zone of a 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 1989, A108, p 1–8CrossRefGoogle Scholar
  14. 14.
    M. Shome, O.P. Gupta, and O.N. Mohanty, A Modified Analytical Approach for Modelling Grain Growth in the Coarse Grain HAZ of HSLA Steels, Scr. Mater., 2004, 50, p 1007–1010CrossRefGoogle Scholar
  15. 15.
    M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In Situ Measurement and Modelling of Austenite Grain Growth in a Ti/Nb Microalloyed Steel, Acta Mater., 2012, 60, p 1015–1026CrossRefGoogle Scholar
  16. 16.
    C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao, Kinetic Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19, p 112–115CrossRefGoogle Scholar
  17. 17.
    S.J. Lee and Y.K. Lee, Prediction of Austenite Grain Growth during Austenitization of Low Alloy Steels, Mater. Des., 2008, 29, p 1840–1844CrossRefGoogle Scholar
  18. 18.
    H. Jamshidi Aval, S. Serajzadeh, and A.H. Kokabi, Prediction of Grain Growth Behavior in HAZ During Gas Tungsten Arc Welding of 304 Stainless Steel, J. Mater. Eng. Perform., 2009, 18, p 1193–1200CrossRefGoogle Scholar
  19. 19.
    S.Z. Li, Z. Eliniyaz, L.T. Zhang, F. Sun, Y.Z. Shen, and A.D. Shan, Microstructural Evolution of Delta Ferrite in SAVE12 Steel Under Heat Treatment and Short-Term Creep, Mater. Charact., 2012, 73, p 144–152CrossRefGoogle Scholar
  20. 20.
    ASTM Standard E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2014, p 1–28Google Scholar
  21. 21.
    B. Jeya Ganesh, S. Raju, A.K. Rai, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, and B. Raj, Differential Scanning Calorimetry Study of Diffusional and Martensitic Phase Transformations in Some 9 wt.% Cr Low Carbon Ferritic Steels, Mater. Sci. Technol., 2011, 27, p 500–512CrossRefGoogle Scholar
  22. 22.
    X.Q. Hu, N.M. Xiao, X.H. Luo, and D.Z. Li, Transformation Behavior of Precipitates in a W-Alloyed 10 wt pct Cr Steel for Ultra-supercritical Power Plants, J. Mater. Sci. Technol., 2010, 26, p 817–822CrossRefGoogle Scholar
  23. 23.
    I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 Pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44A, p S128–S135CrossRefGoogle Scholar
  24. 24.
    Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite Transformation Kinetics in 9Cr-1.7W-0.4Mo-Co Ferritic Steel, J. Alloys Compd., 2014, 610, p 322–330CrossRefGoogle Scholar
  25. 25.
    H.R. Wang and W. Wang, Simple Model for Austenite Grain Growth in Microalloyed Steels, Mater. Sci. Technol., 2008, 24, p 228–232CrossRefGoogle Scholar
  26. 26.
    C.S. Smith, Grain Shapes and Other Metallurgical Applications of Topology, Metallogr. Microstruct. Anal., 2015, 4, p 543–567CrossRefGoogle Scholar
  27. 27.
    J. Moon, J. Lee, and C. Lee, Prediction for the Austenite Grain Size in the Presence of Growing Particles in the Weld HAZ of Ti-Microalloyed Steel, Mater. Sci. Eng. A, 2007, 459, p 40–46CrossRefGoogle Scholar
  28. 28.
    S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan, Influence of Solution Treatment on the Microstructure of a 9wt.%Cr-1wt.%Mo-0.07wt.%C Steel, Mater. Sci. Eng. A, 1992, A154, p 59–67CrossRefGoogle Scholar
  29. 29.
    K. Laha, K.S. Chandravathi, K.B.S. Rao, and S.L. Mannan, Hot Tensile Properties of Simulated Heat-Affected Zone Microstructures of 9Cr1Mo Weldment, Int. J. Press. Vessel. Pip., 1995, 62, p 303–311CrossRefGoogle Scholar
  30. 30.
    P.A. Beck, J.C. Kremer, and L. Demer, Grain Growth in High Purity Aluminum, Phys. Rev., 1947, 71, p 555CrossRefGoogle Scholar
  31. 31.
    S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels: Considering the Effect of Initial Grain Size on Isothermal Growth Behavior, ISIJ Int., 2004, 44, p 1230–1237CrossRefGoogle Scholar
  32. 32.
    H. Hu and B.B. Rath, On the Time Exponent in Isothermal Grain Growth, Metall. Trans., 1970, 1, p 3181–3184Google Scholar
  33. 33.
    L.Z. Han, R.K. Chen, J.F. Gu, and J.S. Pan, X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究 (Behavior of Austenite Grain Growth in X12CrMoWVNbN10-1-1 Ferrite Heat-Resistant Steel), Acta Metall. Sin., 2009, 45, p 1446–1450 ((in Chinese))Google Scholar
  34. 34.
    W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, and Y.C. Wu, Structural Evolution and Grain Growth Kinetics of the Fe-28Al Elemental Powder During Mechanical Alloying and Annealing, Intermetallics, 2007, 15, p 1020–1026CrossRefGoogle Scholar
  35. 35.
    M. Kambara, K. Uenishi, and K.F. Kobayashi, Nano-Structured Intermetallic Compound TiAl Obtained by Crystallization of Mechanically Alloyed Amorphous TiAl, and Its Subsequent Grain Growth, J. Mater. Sci., 2000, 35, p 2897–2905CrossRefGoogle Scholar
  36. 36.
    H.V. Atkinson, Theories of Normal Grain Growth in Pure Single Phase Systems, Acta Metall., 1988, 36, p 469–491CrossRefGoogle Scholar
  37. 37.
    R.A. Vandermeer and H. Hu, On the Grain Growth Exponent of Pure Iron, Acta Metall. Mater., 1994, 42, p 3071–3075CrossRefGoogle Scholar
  38. 38.
    H. Pous-Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite Grain Growth in a Nuclear Pressure Vessel Steel, Mater. Sci. Eng. A, 2013, 567, p 72–79CrossRefGoogle Scholar
  39. 39.
    J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Modeling of Microstructural Evolution in Microalloyed Steel during Hot Forging Process, Acta Metall. Sin. (Engl. Lett.), 2006, 19, p 279–286CrossRefGoogle Scholar
  40. 40.
    S.W. Du, Y.T. Li, and Y. Zheng, Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel, J. Mater. Eng. Perform., 2016, 25, p 2661–2669CrossRefGoogle Scholar
  41. 41.
    S.H.M. Azghandi, V.G. Ahmadabadi, A. Zabett, and F. Fazeli, Modelling of Austenite Grain Growth Kinetics in a Microalloyed Steel (30MSV6) in the Presence of Carbonitride Precipitates, Philos. Mag., 2014, 94, p 2758–2775CrossRefGoogle Scholar
  42. 42.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck, Analysis of Microstructure and Mechanical Properties of Different High Strength Carbon Steels after Hot Stamping, J. Mater. Process. Technol., 2011, 211, p 1117–1125CrossRefGoogle Scholar
  43. 43.
    S. Kumar, S.K. Nath, and V. Kumar, Continuous Cooling Transformation Behavior in the Weld Coarse Grained Heat Affected Zone and Mechanical Properties of Nb-Microalloyed and HY85 Steels, Mater. Des., 2016, 90, p 177–184CrossRefGoogle Scholar
  44. 44.
    S.P. Lu, T. Liang, Y.K. Li, D.Z. Li, L.J. Rong, and Y.Y. Li, Microstructure and Mechanical Properties of Simulated Heat-Affected Zones of EP-823 Steel for ADS/LFR, J. Mater. Sci. Technol., 2015, 31, p 864–871CrossRefGoogle Scholar
  45. 45.
    J. Wang, S.P. Lu, W.C. Dong, D.Z. Li, and L.J. Rong, Microstructural Evolution and Mechanical Properties of Heat Affected Zones for 9Cr2WVTa Steels with Different Carbon Contents, Mater. Des., 2014, 64, p 550–558CrossRefGoogle Scholar
  46. 46.
    X. Guo, J.M. Gong, Y. Jiang, X.W. Wang, and Y.P. Zhao, Microstructures and High-Temperature Mechanical Properties in 9Cr-0.5Mo-1.8 W-VNb Steel after Aging at 650 °C, Mater. High Temp., 2015, 32, p 566–574CrossRefGoogle Scholar
  47. 47.
    Z.X. Shang, Y.Z. Shen, B. Ji, and L.T. Zhang, Effect of δ-Ferrite Evolution and High-Temperature Annealing on Mechanical Properties of 11Cr3W3Co Ferritic/martensitic Steel, Met. Mater. Int., 2016, 22, p 171–180CrossRefGoogle Scholar
  48. 48.
    T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep Rupture Behavior of Grade 91 Steel, Mater. Sci. Eng., A, 2013, 565, p 382–391CrossRefGoogle Scholar
  49. 49.
    L. Zhao, H.Y. Jing, L.Y. Xu, Y.D. Han, and J.J. Xiu, Experimental Study on Creep Damage Evolution Process of Type IV Cracking in 9Cr-0.5Mo-1.8W-VNb Steel Welded Joint, Eng. Fail. Anal., 2012, 19, p 22–31CrossRefGoogle Scholar
  50. 50.
    M.E. Abd El-Azim, O.H. Ibrahim, and O.E. El-Desoky, Long Term Creep Behaviour of Welded Joints of P91 Steel at 650 °C, Mater. Sci. Eng. A, 2013, 560, p 678–684CrossRefGoogle Scholar
  51. 51.
    D.H. Meng, F.G. Lu, and H.C. Cui, Investigation on Creep Behavior of Welded Joint of Advanced 9% Cr Steels, J. Mater. Res., 2015, 30, p 197–205CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jichao Wang
    • 1
  • Pulin Nie
    • 1
    Email author
  • Shangfei Qiao
    • 2
  • O. A. Ojo
    • 3
  • Chengwu Yao
    • 1
  • Zhuguo Li
    • 1
  • Jian Huang
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Turbine PlantShanghai Electric Power Generation Equipment Co. Ltd.ShanghaiPeople’s Republic of China
  3. 3.Department of Mechanical and Manufacturing EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations