Journal of Materials Engineering and Performance

, Volume 27, Issue 10, pp 5470–5477 | Cite as

Wetting and Brazing of Chromium Film-Deposited Alumina Using AgCu Filler Metal

  • Z. B. Chen
  • H. Bian
  • C. N. Niu
  • X. G. SongEmail author
  • Y. Z. Lei
  • C. Jin
  • J. Cao
  • J. C. Feng


Wetting behavior of AgCu filler on chromium film-deposited Al2O3 ceramics was studied by sessile drop method under vacuum, and brazing of chromium-deposited alumina using AgCu was carried out. Cr film can improve the wettability of AgCu filler on alumina ceramics, and the contact angle decreased dramatically. However, with further increase in temperature and extension of wetting time, Cr atom might diffuse excessively to molten alloy or substrate leading to thinned or disappeared Cr film on alumina; thus, the contact angle of AgCu on alumina increased. The reliable alumina joint was obtained via chromium deposition using AgCu filler brazed at 900 °C for 10 min, and no hard or brittle intermetallic compounds formed in the brazed joint. The maximum shear strength of 16.8 MPa was achieved when the thickness of deposited chromium film was 2 μm.


AgCu filler metal brazing chromium-deposited alumina interfacial microstructure wetting behavior 



This project is supported by National Natural Science Foundation of China (Grant Nos. 51775138 and U1537206) and the Key Research & Development program of Shandong Province (No. 2017GGX40103).


  1. 1.
    C. Leinenbach, N. Weyrich, H. Elsener et al., Al2O3-Al2O3 and Al2O3-Ti Solder Joints-Influence of Ceramic Metallization and Thermal Pretreatment on Joint Properties, Int. J. Appl. Ceram. Technol., 2012, 9(4), p 751–763CrossRefGoogle Scholar
  2. 2.
    Z. Sun, L.X. Zhang, J.L. Qi, Z.H. Zhang, C.L. Tian, and J.C. Feng, Brazing of SiO2f/SiO2 Composite Modified with Few-Layer Graphene and Invar Using AgCuTi Alloy, Mater. Des., 2015, 88, p 51–57CrossRefGoogle Scholar
  3. 3.
    J.H. Lin, D.L. Luo, S.L. Chen et al., Control Interfacial Microstructure and Improve Mechanical Properties of TC4-SiO2f/SiO2 Joint by AgCuTi with Cu Foam as Interlayer, Ceram. Int., 2016, 42(15), p 16619–16625CrossRefGoogle Scholar
  4. 4.
    C. Su, X. Zhuang, C. Pan et al., Al2O3/SUS304 Brazing via AgCuTi-W Composite as Active Filler, J. Mater. Eng. Perform., 2014, 23(3), p 906–911CrossRefGoogle Scholar
  5. 5.
    W.B. Hanson, K.I. Ironside, and J.A. Fernie, Active Metal Brazing of Zirconia, Acta Mater., 2000, 48, p 4673–4676CrossRefGoogle Scholar
  6. 6.
    X.Y. Dai, J. Cao, J.K. Liu, S. Su, and J.C. Feng, Effect of Holding Time on Microstructure and Mechanical Properties of ZrO2/TiAl Joints Brazed by Ag-Cu filler Metal, Mater. Des., 2015, 87, p 53–59CrossRefGoogle Scholar
  7. 7.
    G.W. Liu, G.J. Qiao, H.J. Wang, J.F. Yang, and T.J. Lu, Pressureless Brazing of Zirconia to Stainless Steel with Ag-Cu filler Metal and TiH2 Powder, J. Eur. Ceram. Soc., 2008, 28, p 2701–2708CrossRefGoogle Scholar
  8. 8.
    J.C. Feng, X.Y. Dai, D. Wang, R. Li, and J. Cao, Microstructure Evolution and Mechanical Properties of ZrO2/TiAl Joints Vacuum Brazed by Ag-Cu filler Metal, Mater. Sci. Eng. A, 2015, 639, p 739–746CrossRefGoogle Scholar
  9. 9.
    M. Singh, T. Matsunaga, H. Lin et al., Microstructure and Mechanical Properties of Joints in Sintered SiC Fiber-Bonded Ceramics Brazed with Ag-Cu-Ti Alloy, Mater. Sci. Eng. A, 2012, 557(11), p 69–76CrossRefGoogle Scholar
  10. 10.
    M. Singh, G.N. Morscher, T.P. Shpargel et al., Active Metal Brazing of Titanium to High-Conductivity Carbon-Based Sandwich Structures, Mater. Sci. Eng. A, 2008, 498, p 31–36CrossRefGoogle Scholar
  11. 11.
    I. Chihiro and T. Shunichiro, Reactive Wetting of Ag-Cu-Ti on SiC in HRTEM, Acta Mater., 1998, 46, p 2381–2386CrossRefGoogle Scholar
  12. 12.
    J.H. Xiong, J.H. Huang, H. Zhang et al., Brazing of Carbon Fiber Reinforced SiC Composite and TC4 Using Ag-Cu-Ti Active Brazing Alloy, Mater. Sci. Eng. A, 2010, 527, p 1096–1101CrossRefGoogle Scholar
  13. 13.
    J. Li, G. Sheng, L. Huang et al., Additional Active Metal Nb in Cu-Ni System Filler Metal for Brazing of TiC Cermet/Steel, Mater. Lett., 2015, 156, p 10–13CrossRefGoogle Scholar
  14. 14.
    S. Mandal, A.K. Ray, A.K. Ray et al., Correlation Between the Mechanical Properties and the Microstructural Behaviour of Al2O3-(Ag-Cu-Ti) Brazed Joints, Mater. Sci. Eng. A, 2004, 383(2), p 235–244CrossRefGoogle Scholar
  15. 15.
    A. Kar, S. Mandal, K. Venkateswarlu et al., Characterization of Interface of Al2O3-304 Stainless Steel Braze Joint, Mater. Charact., 2007, 58(6), p 555–562CrossRefGoogle Scholar
  16. 16.
    D.P. Yadav, R. Kaul, P. Ganesh et al., Study on Vacuum Brazing of High Purity Alumina for Application in Proton Synchrotron, Mater. Des., 2014, 64, p 415–422CrossRefGoogle Scholar
  17. 17.
    G.B. Niu, D.P. Wang, Z.W. Yang et al., Microstructure and Mechanical Properties of Al2O3 Ceramic and TiAl Alloy Joints Brazed with Ag-Cu-Ti Filler Metal, Ceram. Int., 2016, 42(6), p 6924–6934CrossRefGoogle Scholar
  18. 18.
    M. Ali, K.M. Knowles, P.M. Mallinson et al., Interfacial Reactions Between Sapphire and Ag-Cu-Ti-Based Active Braze Alloys, Acta Mater., 2016, 103, p 859–869CrossRefGoogle Scholar
  19. 19.
    M. Ali, K.M. Knowles, P.M. Mallinson et al., Microstructural Evolution and Characterisation of Interfacial Phases in Al2O3/Ag-Cu-Ti/Al2O3 Braze Joints, Acta Mater., 2015, 96, p 143–158CrossRefGoogle Scholar
  20. 20.
    W. Fu, X.G. Song, S.P. Hu et al., Brazing Copper and Alumina Metallized with Ti-Containing Sn0.3Ag0.7Cu Metal Powder, Mater. Des., 2015, 87, p 579–585CrossRefGoogle Scholar
  21. 21.
    W. Fu, S.P. Hu, X.G. Song et al., Effect of Ti Content on the Metallization Layer and Copper/Alumina Brazed Joint, Ceram. Int., 2017, 43(16), p 13206–13213CrossRefGoogle Scholar
  22. 22.
    X. Liu, X. Lv, C. Li et al., Wettability of Ti-Al Alloys on TiN Substrate at 1758 K, Mater. Today Proc., 2015, 2, p S274–S278CrossRefGoogle Scholar
  23. 23.
    A.P. Wang, T. Zhang, J.Q. Wang et al., Ni-Based Fully Amorphous Metallic Coating with high Corrosion Resistance, Philos. Mag. Lett., 2006, 86(1), p 5–11CrossRefGoogle Scholar
  24. 24.
    N. Kumar, S. Dash, S. Rajagopalan et al., Tribological Properties of SiC Coatings Deposited by R.F. Magnetron Sputtering as a Function of Substrate Temperature, Philos. Mag. Lett., 2011, 91(7), p 465–472CrossRefGoogle Scholar
  25. 25.
    ASM Handbook Volume 03 Alloy Phase Diagrams, 10th edn. (1992)Google Scholar
  26. 26.
    N. Sobczak, K. Nogi, H. Fujii et al., The Effect of Cr Thin Film on Wettability and Bonding in Ni/Alumina Couple. in ASM International Materials Solutions Conference, International Conference on Joining of Advanced and Specialty Materials (2003)Google Scholar
  27. 27.
    B. Kong, J. Ru, H. Zhang et al., Enhanced Wetting and Properties of Carbon/Carbon-Cu Composites with Cr3C2 Coatings by Cr-Solution Immersion Method, J. Mater. Sci. Technol., 2018, 34, p 458–465CrossRefGoogle Scholar
  28. 28.
    J. Song, Q. Guo, Z. Tao et al., Mo2C Intermediate Layers for Graphite-Cu System Using the molten Salt Method, Fusion Eng. Des., 2011, 86(12), p 2965–2970CrossRefGoogle Scholar
  29. 29.
    K. Sang, J. Yang, W. Shi et al., Preparation of Coatings on Alumina Ceramic for Wettability, Ceram. Int., 2014, 40(4), p 5659–5663CrossRefGoogle Scholar
  30. 30.
    N. Eustathopoulos, M. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon Press, Oxford, 1999, p 206Google Scholar
  31. 31.
    O. Kozlova, R. Voytovych, M.F. Devismes, and N. Eustathopoulos, Wetting and Brazing of Stainless Steels by Copper-Silver Eutectic, Mater. Sci. Eng. A, 2008, 495(1), p 96–101CrossRefGoogle Scholar
  32. 32.
    Q.Q. Lai, L.D. Zhang, and N. Eustathopoulos, Enhanced Wetting of Dual-Phase Metallic Solids by Liquid Metals: A New Effect of Interfacial Reaction, Acta Mater., 2013, 61(11), p 4127–4134CrossRefGoogle Scholar
  33. 33.
    V. Laurent, Ph.d, thesis. INP Grenoble, France (1988)Google Scholar
  34. 34.
    P. Kritsalis, J.G. Li, L. Coudurier et al., Role of Clusters on the Wettability and Work of Adhesion of the Cu-Cr/Al2O3, System, J. Mater. Sci. Lett., 1990, 9(11), p 1332–1335CrossRefGoogle Scholar
  35. 35.
    M. Samandi, M. Gudze, and P. Evans, Application of Ion Implantation to Ceramic/Metal Joining, Nucl. Instrum. Methods Phys. Res. B, 1997, 127–128, p 669–672CrossRefGoogle Scholar
  36. 36.
    N. Inoue, M. Kikuchi, T. Manabe et al., Effect of Ion Treatment on Water Wettability of SiO2 Glass, Nucl. Instrum. Methods Phys. Res. B, 1997, 59–60, p 1328–1330Google Scholar
  37. 37.
    X.M. Xue, J.T. Wang, Z.T. Sui et al., Wettability and Interfacial Reaction of Alumina and Zirconia by Reactive Silver-Indium Base Alloy at Mid-Temperatures, J. Mater. Sci., 1993, 28(5), p 1317–1322CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Z. B. Chen
    • 1
  • H. Bian
    • 1
  • C. N. Niu
    • 1
  • X. G. Song
    • 1
    • 2
    Email author
  • Y. Z. Lei
    • 2
  • C. Jin
    • 2
  • J. Cao
    • 1
  • J. C. Feng
    • 1
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.Shandong Provincial Key Lab of Special Welding TechnologyHarbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations