Journal of Materials Engineering and Performance

, Volume 27, Issue 9, pp 4871–4880 | Cite as

Effect of Rolling Temperature on Fracture Properties of INRAFMS at Different Temperatures

  • M. Nani Babu
  • Atul Prajapati
  • G. Sasikala
  • S. K. Albert
  • C. R. Das
  • Thomas Paul


Two heats of Indian reduced activation ferritic / martensitic steel have been produced with similar chemical composition and identical process parameters except the start and final rolling temperature referred as P950 and P1050, respectively. Fracture behaviours of both the heats have been evaluated, and it was found that quasistatic fracture properties are better for P1050 than P950. An attempt is made to establish the reasons for the observed behaviour through optical, scanning electron microscopic, electron backscatter diffraction and transmission electron microscopic studies. These variations are attributed to the difference in rolling temperature of both heats. P1050 meets the acceptance criteria as per Indian specifications, and it compares favourably with the international grades of equivalent RAFM steels.


dynamic fracture properties and microstructure INRAFMS rolling temperature 



Authors are indebted to the directors of IGCAR and IPR for guidance and encouragement. Experimental assistance from Shri Syed Meer Kaleem and Smt. G. Shanthi in fracture testing and from Shri. V Ganesan for EBSD is gratefully acknowledged.


  1. 1.
    A. Kimura, Current Status of Reduced-Activation Ferritic/Martensitic Steels R&D for Fusion Energy, Mater. Trans., 2005, 46, p 394–404CrossRefGoogle Scholar
  2. 2.
    A.F. Tavassoli, J.W. Rensman, M. Schirra, and K. Shiba, Materials Design Data for Reduced Activation Martensitic Steel Type F82H, Fusion Eng. Des., 2002, 61–62, p 617–628CrossRefGoogle Scholar
  3. 3.
    A. Kimura, R. Kasada, A. Kohyama, H. Tanigawa, T. Hirose, K. Shiba, S. Jitsukawa, S. Ohtsuka, S. Ukai, M.A. Sokolov, R.L. Klueh, T. Yamamoto, and G.R. Odette, Recent Progress in US-Japan Collaborative Research on Ferritic Steels R&D, J Nucl. Mater., 2007, 367–370, p 60–67CrossRefGoogle Scholar
  4. 4.
    R.L. Klueh, Reduced-Activation Bainitic and Martensitic Steels for Nuclear Fusion Applications, Curr. Opin. Sol. State Mater. Sci., 2004, 8, p 239–250CrossRefGoogle Scholar
  5. 5.
    B. Raj and T. Jayakumar, Development of Reduced Activation Ferritic-Martensitic Steels and Fabrication Technologies for Indian Test blanket Module, J. Nucl. Mater., 2011, 417, p 72–76CrossRefGoogle Scholar
  6. 6.
    K. Laha, S. Saroja, A. Moitra, R. Sandhya, M.D. Mathew, T. Jayakumar, and E. Rajendra Kumar, Development of India-Specific RAFM Steel Through Optimization of Tungsten and Tantalum Contents for Better Combination of Impact, Tensile, Low Cycle Fatigue and Creep Properties, J. Nucl. Mater., 2013, 439, p 41–50CrossRefGoogle Scholar
  7. 7.
    V. Thomas Paul, S. Saroja, S.K. Albert, T. Jayakumar, and E. Rajendra Kumar, Microstructural Characterization of Weld Joints of 9Cr Reduced Activation Ferritic Martensitic Steel Fabricated by Different Joining Methods, Mater. Char., 2014, 96, p 213–224CrossRefGoogle Scholar
  8. 8.
    Standard Test Methods for Notched Bar Impact Testing of Metallic Materials Designation: 2013, E23-12C.Google Scholar
  9. 9.
    ASTM Standard Test Method for Linear-Elastic Plane-Strain Toughness KIc of Metallic Materials, ASTM E399-12e3.Google Scholar
  10. 10.
    ASTM Standard Test Method for Measurement of fracture Toughness, ASTM E1820-15a.Google Scholar
  11. 11.
    S. Kumar and W.A. Curtin, Crack Interaction with Microstructure, Mater. Today, 2007, 10, p 34–44CrossRefGoogle Scholar
  12. 12.
    K. Haarmann, J.C. Vaillant, B. Vandenberghe, W. Bendick, A. Arbab, The T91/P91 Book, Vallorec & Mannesmann Tubes, V & M France, Power Division, 130, rude de Silly, 92103 Boulongne, France.Google Scholar
  13. 13.
    R. Kirana, S. Raju, R. Mythili, S. Saibaba, T. Jayakumar, and E. Rajendra Kumar, High-Temperature Phase Stability of 9Cr-W-Ta-V-C Based Reduced Activation Ferritic-Martensitic (RAFM) Steels: Effect of W and Ta Additions, Steel Res. Int., 2015, 86, p 825–840CrossRefGoogle Scholar
  14. 14.
    P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6, p 653–663CrossRefGoogle Scholar
  15. 15.
    K.G. Samuel, S.L. Mannan, and P. Rodriguez, Serrated Yielding in AISI, 316 Stainless Steels, Acta Metall., 1988, 36, p 2323–2327CrossRefGoogle Scholar
  16. 16.
    S. Venkadesan, C. Phaniraj, P.V. Sivaprasad, and P. Rodriguez, Activation Energy for Serrated Flow in a 15Cr-5Ni Ti-Modified Austenitic Stainless Steel, Acta Metall. Mater., 1992, 40, p 569–580CrossRefGoogle Scholar
  17. 17.
    P. Rodriguez, Dynamic strain ageing: Is it really a damage mechanism, in Proceedings of the International Symposium on Materials Ageing and Life Management, ed. by T. Jayakumar, R.K. Dayal (Allied Publishers Limited, Chennai, 2000), pp. K1–K14Google Scholar
  18. 18.
    R. Kishore, R.N. Singh, T.K. Sinha, and B.P. Kashyap, Serrated Flow in a Modified 9Cr-1Mo Steel, Scr. Metall. Mater., 1995, 32, p 1297–1300CrossRefGoogle Scholar
  19. 19.
    R. Kishore, R.N. Singh, T.K. Sinha, and B.P. Kashyap, Effect of Dynamic Strain Ageing on the Tensile Properties of a Modified 9Cr-1Mo Steel, J. Mater. Sci., 1997, 32, p 437–442CrossRefGoogle Scholar
  20. 20.
    M. Weisse, C.K. Wamukwamba, H.-J. Christ, and H. Mughrabi, The Cyclic Deformation and Fatigue Behaviour of the Low Carbon Steel SAE 1045 in the Temperature Regime of Dynamic Strain Ageing, Acta Metall. Mater., 1993, 41, p 2227CrossRefGoogle Scholar
  21. 21.
    M. Nani Babu, G. Sasikala, B. Shashank Dutt, S. Venugopal, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Investigation on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behaviour of Modified 9Cr-1Mo Steel, Int. J Fatigue., 2012, 43, p 242–245CrossRefGoogle Scholar
  22. 22.
    E. Lucon, R. Chaouadi, and M. Decreton, Mechanical Properties of the European Reference RAFM Steel (EUROFER97) Before and After Irradiation at 300  °C, J. Nucl. Mater., 2004, 329–333, p 1078–1082CrossRefGoogle Scholar
  23. 23.
    L. Huang, X. Hu, C. Yang, W. Yan, F. Xiao, Y. Shan, and K. Yang, Influence of Thermal Aging on Microstructure and Mechanical Properties of CLAM Steel, J. Nucl. Mater., 2013, 443, p 479–483CrossRefGoogle Scholar
  24. 24.
    R. Chaouadi, G. Coen, E. Lucon, and V. Massaut, Crack Resistance Behavior of ODS and Standard 9%Cr-Containing Steels at High Temperature, J. Nucl. Mater., 2010, 403, p 15–18CrossRefGoogle Scholar
  25. 25.
    K. Splichal, J. Berka, J. Burda, and M. Zmitko, Fracture Toughness of the Hydrogen Charged EUROFER 97 RAFM Steel at Room Temperature and 120  °C, J. Nucl. Mater., 2009, 392, p 125–132CrossRefGoogle Scholar
  26. 26.
    M.A. Sokolov, H. Tanigawa, G.R. Odette, K. Shiba, and R.L. Klueh, Irradiation Effects on Precipitation and Its Impact on the Mechanical Properties of Reduced-Activation Ferritic/Martensitic Steels, J. Nucl. Mater., 2007, 367–370, p 68–73CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • M. Nani Babu
    • 1
    • 2
  • Atul Prajapati
    • 3
  • G. Sasikala
    • 1
    • 2
  • S. K. Albert
    • 1
    • 2
  • C. R. Das
    • 1
    • 2
  • Thomas Paul
    • 1
    • 2
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.HBNIIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.TBM DivisionInstitute for Plasma ResearchBhat, GandhinagarIndia

Personalised recommendations