Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 9, pp 4481–4488 | Cite as

Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt.% NaCl Solution

  • Devesh Kumar
  • Ornov Maulik
  • V. K. Sharma
  • Y. V. S. S. Prasad
  • Vinod KumarEmail author
Article
  • 133 Downloads

Abstract

The electrochemical study of AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5, 1 mol) high-entropy alloys (HEA) is performed in 3.5 wt.% NaCl solution at room temperature (25 °C). The potentiodynamic polarization curve of the AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5, 1 mol) alloys obtained in 3.5 wt.% NaCl solution shows that the corrosion resistance of the tungsten (W)-free HEA is lower than the alloys containing W. It is observed that W forms solid WO3 layer in the outer region of the film in a 3.5 wt.% NaCl. The scanning electron microscopy and infrared spectroscopy confirmed the electrochemical results. The electrochemical impedance spectroscopy of these alloys had one capacitive loop, which represented the presence of electrical double layer.

Keywords

corrosion high-entropy alloys polarization 

Notes

Acknowledgments

Authors are thankful to BRNS Project No. 34/20/01/2014-BRNS-0339, Mumbai (India), for financial assistance and Prof. V.S.Raja, Professor, IIT Bombay, for providing equipment for electrochemical study.

References

  1. 1.
    A. Peker and W.L. Johnson, A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 1993, 63, p 2342–2344CrossRefGoogle Scholar
  2. 2.
    A. Inoue, K. Amiya, T. Zhang, and T. Masumoto, Mechanical Strength and Thermal Stability of Ti-Based Amorphous Alloys with Large Glass-Forming Ability, Mater. Sci. Eng. A, 1994, 179, p 692–696Google Scholar
  3. 3.
    V. Kumar, Detection and Distribution of Lithium in Mg-Li-Al Based Alloy by ToF-SIMS, Appl. Surf. Sci. Vol. 388 Part A, 2016, 1, p 64–70CrossRefGoogle Scholar
  4. 4.
    K. Asami, S.J. Pang, T. Zhang, and A. Inoue, Preparation and Corrosion Resistance of Fe–Cr–Mo–C–B–P Bulk Glassy Alloys, J. Electrochem. Soc., 2002, 149, p B366–B369CrossRefGoogle Scholar
  5. 5.
    B. Shen, M. Akiba, and A. Inoue, Effect of Cr Addition on the Glass-Forming Ability, Magnetic Properties, and Corrosion Resistance in FeMoGaPCBSi Bulk Glassy Alloys, J. Appl. Phys., 2006, 100, p 043523CrossRefGoogle Scholar
  6. 6.
    S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Bulk Glassy Fe–Cr–Mo–C–B Alloys with High Corrosion Resistance, Corros. Sci., 2002, 44, p 1847–1856CrossRefGoogle Scholar
  7. 7.
    I. Chattoraj, S. Baunack, M. Stoica, and A. Gebert, Electrochemical Response of Fe65.5Cr4Mo4Ga4P12C5B5.5 Bulk Amorphous Alloy in Different Aqueous Media, Mater. Corros., 2004, 55, p 36–42CrossRefGoogle Scholar
  8. 8.
    D.Y. Liu, H.F. Zhang, Z.Q. Hu, and W. Gao, Magnetic and Corrosion Properties of Fe56Co7M2Mo5Zr10B20 (M = W or Ni) Bulk Metallic Glasses, J. Alloys Compd., 2006, 422, p 28–31CrossRefGoogle Scholar
  9. 9.
    H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Amorphous Fe–Cr–Mo–P–C and Fe–Cr–W–P–C Alloys in 6 M HCl Solution, Corros. Sci., 1992, 33, p 225–236CrossRefGoogle Scholar
  10. 10.
    A. Tamayo, F. Rubio, M. Alejandra Mazo, J. Rubio, Further Characterization of the Surface Properties of the SiC Particles Through Complementarity of XPS and IGC-ID Techniques, Boletín de la Sociedad Española de Cerámica y Vidrio,  https://doi.org/10.1016/j.bsecv.2018.04.003
  11. 11.
    J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Formation of Simple Crystal Structure in Cu–Co–Ni–Cr–Al–Fe–Ti–V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 2004, 35A, p 2533–2536CrossRefGoogle Scholar
  12. 12.
    C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36A, p 1263–1271CrossRefGoogle Scholar
  13. 13.
    C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition, Metall. Mater. Trans. A, 2004, 35A, p 1465–1469CrossRefGoogle Scholar
  14. 14.
    Y.F. Kao, T.D. Lee, S.K. Chen, and Y.S. Chang, Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) Alloys in Sulfuric Acids, Corros. Sci., 2010, 52, p 1026–1034CrossRefGoogle Scholar
  15. 15.
    J. Li, X. Yang, R. Zhu, and Y. Zhang, Corrosion and Serration Behaviors of TiZr0.5NbCr0. 5VxMoy High Entropy Alloys in Aqueous Environments, Metals, 2014, 4, p 597–608CrossRefGoogle Scholar
  16. 16.
    Y.L. Chou, J.W. Yeh, and H.C. Shih, The Effect of Molybdenum on the Corrosion Behaviour of the High-Entropy Alloys Co1.5CrFeNi1.5Ti0.5Mox in Aqueous Environments, Corros. Sci., 2010, 52, p 2571–2581CrossRefGoogle Scholar
  17. 17.
    D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V. Kumar, Phase and Thermal Study of Equiatomic AlCuCrFeMnW High Entropy Alloy Processed via Spark Plasma Sintering. Mat. Chem. Phys.  https://doi.org/10.1016/j.matchemphys.2017.08.049 (in press)
  18. 18.
    D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V.K. Sharma, and V. Kumar, Impact of Tungsten on Phase Evolution in Nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1 and 0.5 mol) High Entropy Alloys, Mater. Res., 2017,  https://doi.org/10.1088/2053-1591/aa96df Google Scholar
  19. 19.
    O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, Structural Evolution of Spark Plasma Sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) High Entropy Alloys, Intermetallics, 2016, 77, p 46–56CrossRefGoogle Scholar
  20. 20.
    D. Zander, B. Heisterkamp, and I. Gallino, Corrosion Resistance of Cu–Zr–Al–Y and Zr–Cu–Ni–Al–Nb Bulk Metallic Glasses, J. Alloys Compd., 2007, 434–435, p 234–236CrossRefGoogle Scholar
  21. 21.
    R.J. Brigham, Pitting of Molybdenum Bearing Austenitic Stainless Steel, Corrosion, 1972, 28, p 177–179CrossRefGoogle Scholar
  22. 22.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, 1974Google Scholar
  23. 23.
    C.R. Clayton and Y.C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, J. Electrochem. Soc., 1986, 133, p 2465–2473CrossRefGoogle Scholar
  24. 24.
    Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure and Electrochemical Properties of High Entropy Alloys Comparison with Type-304 Stainless Steel, Corros. Sci., 2005, 47, p 2257–2279CrossRefGoogle Scholar
  25. 25.
    M. Kissi, M. Bouklah, B. Hammouti, and M. Benkaddour, Establishment of Equivalent Circuits from Electrochemical Impedance Spectroscopy Study of Corrosion Inhibition of Steel by Pyrazine in Sulphuric Acidic Solution, Appl. Surf. Sci., 2006, 252, p 4190–4197CrossRefGoogle Scholar
  26. 26.
    C.N. Cao and J.Q. Zhang, An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, 2002Google Scholar
  27. 27.
    I.B. Singh, M. Singh, and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys, 2015, 3, p 142–148CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Devesh Kumar
    • 1
  • Ornov Maulik
    • 2
  • V. K. Sharma
    • 1
  • Y. V. S. S. Prasad
    • 1
  • Vinod Kumar
    • 3
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringMNITJaipurIndia
  2. 2.Anton Parr Private India LtdGurugramIndia
  3. 3.Discipline of Metallurgy Engineering and Materials ScienceIIT IndoreIndoreIndia

Personalised recommendations