Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 8, pp 3994–4004 | Cite as

A Study on Thermal Conductivity and Stability of Nanofluids Containing Chemically Synthesized Nanoparticles for Advanced Thermal Applications

  • Sujoy Das
  • Krishnan Bandyopadhyay
  • M. M. Ghosh
Article
  • 71 Downloads

Abstract

This study presents easy methods of synthesizing silver (Ag) and copper (Cu) nanoparticles through chemical route in an aqueous medium under atmospheric condition at ambient temperature. The synthesized nanoparticles have been characterized with different techniques, such as x-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, UV–visible spectroscopy and dynamic light scattering measurements. Experimental observations have revealed the absence of any metal oxide layer around the nanoparticles which are found to remain stable under ambient conditions. The featured properties, such as narrow size distribution, stability, make these nanoparticles potential candidates for the synthesis of effective nanofluids. The nanofluids have been prepared by dispersing the nanoparticles synthesized through chemical route in a suitable base fluid. The thermal conductivity of nanofluids with different nanoparticles loading has been measured by transient hot-wire method, and the results have shown that the increasing trend of enhancement in thermal conductivity with respect to nanoparticles concentration is attainable only when the nanoparticles concentration is below some limiting value depending on the type of nanofluid. Beyond this limiting value of loading, the thermal conductivity of the nanofluid decreases due to pronounced agglomeration effect. The measurements of thermal conductivity of nanofluids over varying temperatures for a given volume fraction loading of nanoparticles have shown that the thermal conductivity increases markedly with the increase in temperature. Hence, nanofluids are likely to be much more promising at high-temperature applications.

Keywords

Ag nanoparticles Cu nanoparticles nanofluid stability thermal conductivity 

Notes

Acknowledgment

The financial support of the Department of Science and Technology, Government of India, through Grant No. SR/FTP/ETA-118/2011 for executing this project is thankfully acknowledged.

References

  1. 1.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, 1904, p 435–441Google Scholar
  2. 2.
    S.U.S. Choi, Nanofluids: From Vision to Reality Through Research, J. Heat Transf., 2009, 131, p 033106–033109CrossRefGoogle Scholar
  3. 3.
    S.A. Kumar, K.S. Meenakshi, B.R.V. Narashimhan, S. Srikanth, and G. Arthanareeswaran, Synthesis and Characterization of Copper Nanofluid by a Novel One-Step Method, Mater. Chem. Phys., 2009, 113, p 57–62CrossRefGoogle Scholar
  4. 4.
    X. Wang, X. Xu, and S.U.S. Choi, Thermal Conductivity of Nanoparticle Fluid Mixture, J. Thermophys. Heat Transf., 1999, 13, p 474–480CrossRefGoogle Scholar
  5. 5.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., 2001, 79, p 2252–2254CrossRefGoogle Scholar
  6. 6.
    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, 78, p 718–720CrossRefGoogle Scholar
  7. 7.
    A.A. Avramenko, I.V. Shevchuk, A.I. Tyrinov, and D.G. Blinov, Heat Transfer in Stable Film Boiling of a Nanofluid Over a Vertical Surface, Int. J. Therm. Sci., 2015, 92, p 106–118CrossRefGoogle Scholar
  8. 8.
    A. Moghadassi, E. Ghomi, and F. Parvizian, A Numerical Study of Water Based Al2O3 and Al2O3-Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Therm. Sci., 2015, 92, p 50–57CrossRefGoogle Scholar
  9. 9.
    S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. Heat Transf., 2003, 125, p 567–574CrossRefGoogle Scholar
  10. 10.
    S.M. You, J.H. Kim, and K.H. Kim, Effect of Nanoparticles on Critical Heat flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., 2003, 83, p 3374–3376CrossRefGoogle Scholar
  11. 11.
    A. Ghadimi, R. Saidur, and H.S.C. Metselaar, A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transf., 2011, 54, p 4051–4068CrossRefGoogle Scholar
  12. 12.
    N.A. Dhas, C.P. Raj, and A. Gedanken, Synthesis, Characterization and Properties of Metallic Copper Nanoparticles, Chem. Mater., 1998, 10, p 1446–1452CrossRefGoogle Scholar
  13. 13.
    I. Lisiecki, F. Billoudet, and M.P. Pileni, Control of the Shape and the Size of Copper Metallic Particles, J. Phys. Chem., 1996, 100, p 4160–4166CrossRefGoogle Scholar
  14. 14.
    P.J. Jorge, P.S. Isabel, M.L.M. Luis, and M. Paul, Gold Nanorods: Synthesis, Characterization and Applications, Coord. Chem. Rev., 2005, 249, p 1870–1901CrossRefGoogle Scholar
  15. 15.
    X. Zou, E. Ying, and S. Dong, Seed-Mediated Synthesis of Branched Gold Nanoparticles with the Assistance of Citrate and Their Surface Enhanced Raman Scattering Properties, Nanotechnology, 2006, 17, p 4758–4764CrossRefGoogle Scholar
  16. 16.
    S. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, and M. Gradzielski, Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters, Nanoscale Res. Lett., 2009, 4, p 17–28CrossRefGoogle Scholar
  17. 17.
    V.K. Balakrishnan, X. Han, W.G.W. VanLoon, J.M. Dust, J. Toullec, and E. Buncel, Acceleration of Nucleophilic Attack on an Organophosphorothioate Neurotoxin, Fenitrothion, by Reactive Counterion Cationic Micelles. Regioselectivity as a Probe of Substrate Orientation Within the Micelle, Langmuir, 2004, 20, p 6586–6593CrossRefGoogle Scholar
  18. 18.
    L.P. Wang and G.Y. Hong, A New Preparation of Zinc Sulfide Nanoparticles by Solid-State Method at Low Temperature, Mater. Res. Bull., 2000, 35, p 695–701CrossRefGoogle Scholar
  19. 19.
    E.S. Platunov, I.V. Baranov, S.E. Buravoi, and V.V. Kurepin (E.S. Platunov Ed.), Thermophysical Measurements: A Manual, SPbGUN and PT, St. Petersburg, 2010 (in Russian)Google Scholar
  20. 20.
    Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf., 2000, 43, p 3701–3707CrossRefGoogle Scholar
  21. 21.
    C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study, Physica B, 2000, 283, p 27–31CrossRefGoogle Scholar
  22. 22.
    A.A. Joshi and A. Majumdar, Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films, J. Appl. Phys., 1993, 74, p 31–39CrossRefGoogle Scholar
  23. 23.
    C.W. Shon and M.M. Chen, Microconvective Thermal Conductivity in Disperse Two-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment, ASME J. Heat Transf., 1981, 103, p 47–51CrossRefGoogle Scholar
  24. 24.
    J.C. Maxwell-Garnett, Colours in Metal Glasses and in Metallic Films, Philos. Trans. R. Soc. Lond. Ser. A, 1904, 203, p 385–420CrossRefGoogle Scholar
  25. 25.
    G. Paul, S. Sarkar, T. Pal, P.K. Das, and I. Manna, Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids, J. Colloid Interface Sci., 2012, 371, p 20–27CrossRefGoogle Scholar
  26. 26.
    J. Philip, P.D. Sharma, and B. Raj, Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids, Nanotechnology, 2008, 19, p 305706CrossRefGoogle Scholar
  27. 27.
    M.S. Liu, M.C.C. Lin, C.Y. Tsai, and C.C. Wang, Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method, Int. J. Heat Mass Transf., 2006, 49, p 3028–3033CrossRefGoogle Scholar
  28. 28.
    S.K. Das, N. Putra, and W. Roetzel, Pool Boiling Characteristics of Nano-fluids, Int. J. Heat Mass Transf., 2003, 46, p 851–862CrossRefGoogle Scholar
  29. 29.
    K.S. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, 88, p 031901CrossRefGoogle Scholar
  30. 30.
    Y. Xuan and Q. Li, Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, 2000, 21, p 58–64CrossRefGoogle Scholar
  31. 31.
    J. Philip, P.D. Shima, and B. Raj, Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures, Appl. Phys. Lett., 2007, 91, p 203108CrossRefGoogle Scholar
  32. 32.
    Y.H. Li, W. Qu, and J.C. Feng, Temperature Dependence of Thermal Conductivity of Nanofluids, Chin. Phys. Lett., 2008, 25, p 3319–3322CrossRefGoogle Scholar
  33. 33.
    H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., 2003, 83, p 2931–2933CrossRefGoogle Scholar
  34. 34.
    S. Mukherjee and S. Paira, Preparation and Stability of Nanofluids: A Review, IOSR J. Mech. Civ. Eng., 2013, 9, p 63–69CrossRefGoogle Scholar
  35. 35.
    R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids, J. Appl. Phys., 2013, 113, p 011301CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Sujoy Das
    • 1
  • Krishnan Bandyopadhyay
    • 1
  • M. M. Ghosh
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations