Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 8, pp 4364–4371 | Cite as

Investigation of the Performance of Flow Models for TWIP Steel

  • Suleyman Kilic
  • Fahrettin Ozturk
  • Catalin R. Picu
Article
  • 78 Downloads

Abstract

Modeling of metal processing requires constitutive laws able to represent the experimental material behavior. Of the large number of available empirical constitutive equations, only a subset may be fitted accurately to given experimental data. The present work is aimed at identifying the equations that can be used to model the ambient temperature mechanical behavior of high Mn twinning-induced plasticity (TWIP) steels. These are fitted to experimental data for TWIP900 and further compared in terms of their ability to predict springback. The reference springback value is determined experimentally for the same material. The study provides guidelines for the selection of the constitutive model in forming simulations for this type of steel.

Keywords

empirical constitutive equations finite element analysis twinning-induced plasticity (TWIP) 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R.W. Neu, Performance and Characterization of TWIP Steels for Automotive Applications, Mater. Perform. Charact., 2013, 2(1), p. 244-284.  https://doi.org/10.1520/MPC20130009 Google Scholar
  2. 2.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development—Properties—Application, Int. J. Plast, 2000, 16(10), p 1391–1409CrossRefGoogle Scholar
  3. 3.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22wt.% Mn-0.6wt.% C TWIP Steel, Mater. Sci. Eng., A, 2010, 527(15), p 3552–3560CrossRefGoogle Scholar
  4. 4.
    S. Kılıç and F. Öztürk, Comparison of Performances of Commercial TWIP900 and DP600 Advanced High Strength Steels in Automotive İndustry, J. Fac. Eng. Arch. Gazi Univ., 2016, 31(3), p 567–578Google Scholar
  5. 5.
    S. Kilic, F. Ozturk, T. Sigirtmac, and G. Tekin, Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel, J. Iron. Steel Res. Int., 2015, 22(4), p 361–365CrossRefGoogle Scholar
  6. 6.
    A. Bintu, G. Vincze, C.R. Picu, A.B. Lopes, J.J. Grácio, and F. Barlat, Strain Hardening Rate Sensitivity and Strain Rate Sensitivity in TWIP Steels, Mater. Sci. Eng., A, 2015, 629, p 54–59CrossRefGoogle Scholar
  7. 7.
    K. Chung, K. Ahn, D.-H. Yoo, K.-H. Chung, M.-H. Seo, and S.-H. Park, Formability of TWIP (Twinning İnduced Plasticity) Automotive Sheets, Int. J. Plast, 2011, 27(1), p 52–81CrossRefGoogle Scholar
  8. 8.
    T.A. Lebedkina, M.A. Lebyodkin, J.P. Chateau, A. Jacques, and S. Allain, On the Mechanism of Unstable Plastic Flow in an Austenitic FeMnC TWIP Steel, Mater. Sci. Eng., A, 2009, 519(1–2), p 147–154CrossRefGoogle Scholar
  9. 9.
    S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58(15), p 5129–5141CrossRefGoogle Scholar
  10. 10.
    D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Revealing the Strain-Hardening Behavior of Twinning-İnduced Plasticity Steels: Theory, Simulations, Experiments, Acta Mater., 2013, 61(2), p 494–510CrossRefGoogle Scholar
  11. 11.
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C Steel, Mater. Sci. Eng., A, 2008, 483, p 184–187CrossRefGoogle Scholar
  12. 12.
    J.M. Choung and S.R. Cho, Study on True Stress Correction from Tensile Tests, J. Mech. Sci. Technol., 2008, 22(6), p 1039–1051CrossRefGoogle Scholar
  13. 13.
    Y. Lin, K.M. Hsu, and P.K. Lee, The Application of Flow Stress Model to Sheet Metal Forming Simulation, China Steel Techn. Rep., 2010, 23, p 31–35Google Scholar
  14. 14.
    S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99CrossRefGoogle Scholar
  15. 15.
    A. Smith, Z. Chen, J.Y. Lee, M.G. Lee, and R.H. Wagoner, Effective Method for Fitting Complex Constitutive Equations, Int. J. Plast, 2014, 58, p 100–119CrossRefGoogle Scholar
  16. 16.
    K. Roll, Simulation of Sheet Metal Forming–Necessary Developments in the Future, in Proceedings of Numisheet Conference, Interlaken, Switzerland (2008), pp. 3–11Google Scholar
  17. 17.
    S.-I. Oh, J.-K. Lee, J.-J. Kang, and J.-P. Hong, Applications of Simulation Techniques to Sheet Metal Forming Processes, Met. Mater., 1998, 4(4), p 583–592CrossRefGoogle Scholar
  18. 18.
    K. Roll, Advanced Simulation Techniques-Exceeding Reality?, Mater. Sci. Technol. Assoc. Iron Steel Technol., 2007, 2, p 1288Google Scholar
  19. 19.
    B. Hochholdinger, H. Grass, A. Lipp, P. Hora, and B.M.W.A.G. Munich, Determination of Flow Curves by Stack Compression Tests and Inverse Analysis for the Simulation of Hot Forming, in 7th European LS-DYNA Conference (2009)Google Scholar
  20. 20.
    S. Dziallach, W. Bleck, M. Blumbach, and T. Hallfeldt, Sheet Metal Testing and Flow Curve Determination under Multiaxial Conditions, Adv. Eng. Mater., 2007, 9(11), p 987–994CrossRefGoogle Scholar
  21. 21.
    A. Nasser, A. Yadav, P. Pathak, and T. Altan, Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests, J. Mater. Process. Technol., 2010, 210(3), p 429–436CrossRefGoogle Scholar
  22. 22.
    S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99CrossRefGoogle Scholar
  23. 23.
    H.B. Wang, M. Wan, and Y. Yan, Effect of Flow Stress-Strain Relation on Forming Limit of 5754O Aluminum Alloy, Trans. Nonferrous Metals Soc. China, 2012, 22(10), p 2370–2378CrossRefGoogle Scholar
  24. 24.
    D. Escobar, S.S.F. de Ferreira, and D.B. Santos, Martensite Reversion and Texture Formation in 17Mn-0.06C TRIP/TWIP Steel After Hot Cold Rolling and Annealing, J. Mater. Res. Technol., 2015, 4(2), p 162–170CrossRefGoogle Scholar
  25. 25.
    G. Sun, S. Hu, Y. Gao, and W. Chen, Influence of Direct Annealing Heat Treatment on the Mechanical Properties of As-Casting TWIP Steels, J. Mater. Eng. Perform., 2017, 26(5), p 1981–1985CrossRefGoogle Scholar
  26. 26.
    M. Eskandari, M.A. Mohtadi-Bonab, A. Zarei-Hanzaki, A.G. Odeshi, and J.A. Szpunar, High-Resolution EBSD Study of Adiabatic Shear Band and Neighboring Grains After Dynamic Impact Loading of Mn-Steel Used in Vehicle Structure, J. Mater. Eng. Perform., 2016, 25(4), p 1611–1620CrossRefGoogle Scholar
  27. 27.
    P. Lan and J. Zhang, Tensile Property and Microstructure of Fe-22Mn-0.5C TWIP Steel, Mater. Sci. Eng., A, 2017, 707, p 373–382CrossRefGoogle Scholar
  28. 28.
    P.D. Nezhadfar, A. Rezaeian, and M.S. Papkiadeh, Softening Behavior of a Cold Rolled High-Mn Twinning-Induced Plasticity Steel, J. Mater. Eng. Perfor., 2015, 24(10), p 3820–3825CrossRefGoogle Scholar
  29. 29.
    A. Grajcar, M. Kciuk, S. Topolska, and A. Płachcińska, Microstructure and Corrosion Behavior of Hot-Deformed and Cold-Strained High-Mn Steels, J. Mater. Eng. Perform., 2016, 25(6), p 2245–2254CrossRefGoogle Scholar
  30. 30.
    P. Russo Spena, F. D’Aiuto, P. Matteis, and G. Scavino, Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets, J. Mater. Eng. Perform., 2014, 23(11), p 3949–3956CrossRefGoogle Scholar
  31. 31.
    M. Iker, D. Gaude-Fugarolas, P. Jacques, and F. Delannay, Combination of TWIP Effect and Hardening by Carbide Precipitation in Austenitic Steels with High Manganese and Carbon Contents, in Proceedings of Thermec 2006: International Conference on processing & manufacturing of advanced materials. The Minerals, Metals, Materials Society (TMS), Vancouver (2006)Google Scholar
  32. 32.
    B.H. Song, Y.-D. Park, J. Park, I. Choi, K. Cho, and Y.K. Lee, Effect of Deformation Twin on Mechanical Properties of Lean Manganese Twinning Induced Plasticity (TWIP) Steels at Quasi-Static Strain Rate, in The Twenty-third International Offshore and Polar Engineering Conference (International Society of Offshore and Polar Engineers, 2013)Google Scholar
  33. 33.
    O. Holovenko, M. Ienco, E. Pastore, M. Pinasco, P. Matteis, G. Scavino, and D. Firrao, Microstructural and Mechanical Characterization of Welded Joints on İnnovative High-Strength Steels, La Metallurgia Italiana, 2013, 3(1), p 3–12Google Scholar
  34. 34.
    H. Schumann and K. Goodknecht, Metallographıc Proof of Epsılon Martensıte ın Austenıtıc Steels, Prak Metallogr., 1966, 3(4), p 147–153Google Scholar
  35. 35.
    K. Phiu-on, Deformation Mechanisms and Mechanical Properties of Hot Rolled Fe-Mn-C-(Al)-(Si) Austenitic Steels. (2008), http://publications.rwth-aachen.de/record/50402/files/Phiu_on_Kriangyut.pdf. Accessed 1 May 2016
  36. 36.
    R.C. Picu and A. Majorell, Mechanical Behavior of Ti-6Al-4 V at High and Moderate Temperatures—Part II: Constitutive Modeling, Mater. Sci. Eng., A, 2002, 326(2), p 306–316CrossRefGoogle Scholar
  37. 37.
    N. Origin (OriginLab, MA) 2015Google Scholar
  38. 38.
    J.-E. Jin and Y.-K. Lee, Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel, Mater. Sci. Eng., A, 2009, 527(1), p 157–161CrossRefGoogle Scholar
  39. 39.
    V. Colla, M. De Sanctis, A. Dimatteo, G. Lovicu, A. Solina, and R. Valentini, Strain hardening behavior of dual-phase steels, Metall Mat Trans A, 2009, 40(11), p 2557–2567CrossRefGoogle Scholar
  40. 40.
    Y.-K. Lin, K.-M. Hsu, and P.-K. Lee, The Application of Flow Stress Model to Sheet Metal Forming Simulation, China Steel Techn. Rep., 2010, 23, p 31–35Google Scholar
  41. 41.
    B. Sener and M. Yurci, Comparison of Quasi-Static Constitutive Equations and Modeling of Flow Curves for Austenitic 304 and Ferritic 430 Stainless Steels, Acta Phys. Polon. A, 2017, 131(3), p 605–607CrossRefGoogle Scholar
  42. 42.
    DYNAFORM, Complete Die System Simulation Solution Software (2015), https://www.eta.com/inventium/dynaform. Accessed 1 May 2015
  43. 43.
    P. Chen and M. Koç, Simulation of Springback Variation in Forming of Advanced High Strength Steels, J. Mater. Process. Technol., 2007, 190(1), p 189–198CrossRefGoogle Scholar
  44. 44.
    M. Kadkhodayan and I. Zafarparandeh, On the Relation of Equivalent Plastic Strain and Springback in Sheet Draw Bending, Int. J. Mater. Form., 2008, 1(1), p 141–144CrossRefGoogle Scholar
  45. 45.
    J.-Y. Lee, J.-W. Lee, M.-G. Lee, and F. Barlat, An Application of Homogeneous Anisotropic Hardening to Springback Prediction in Pre-strained U-Draw/Bending, Int. J. Solids Struct., 2012, 49(25), p 3562–3572CrossRefGoogle Scholar
  46. 46.
    J.O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore Softw. Technol. Corp., 2007, 970, p 299Google Scholar
  47. 47.
    S. Kilic and F. Ozturk, Evaluation of Formability Under Different Deformation Modes for TWIP900 Steel, J. Eng. Mater. Technol., 2017, 139(3), p 031001–031008CrossRefGoogle Scholar
  48. 48.
    X. Jingjing, W. Xiumei, Z. Ping, W. Yimin, C. Nianyi, L. Wencong, Springback Prediction in Sheet Metal Forming Combined Finite Element Method with Date Mining Technique (2002), https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/conference-paper/2002-int-ansys-conf-5.pdf. Accessed 1 June 2016
  49. 49.
    K.I. Patel, Evaluation of Springback Prediction Capability Using Uniform Pure Bending (2006), https://soar.wichita.edu/xmlui/bitstream/handle/10057/365/t06053.pdf?sequence=3&isAllowed=y. Accessed 1 July 2016
  50. 50.
    T. Trzepiecinski and H.G. Lemu, Effect of Computational Parameters on Springback Prediction by Numerical Simulation, Metals, 2017, 7(9), p 380CrossRefGoogle Scholar
  51. 51.
    D. Zhu, Newest Progress on the Springback’s Study of Plate Forming, J. Plast. Eng., 2000, 1, p 11–17Google Scholar
  52. 52.
    Y. Moon, S. Kang, J. Cho, and T. Kim, Effect of Tool Temperature on the Reduction of the Springback of Aluminum Sheets, J. Mater. Process. Technol., 2003, 132(1), p 365–368CrossRefGoogle Scholar
  53. 53.
    T. Trzepiecinski and H.G. Lemu, Prediction of Springback in V-die Air Bending Process by Using Finite Element Method, in MATEC Web of Conferences, 2017. https://doi.org/10.1051/matecconf/201712103023. Accessed 1 September 2017

Copyright information

© ASM International 2018

Authors and Affiliations

  • Suleyman Kilic
    • 1
  • Fahrettin Ozturk
    • 2
  • Catalin R. Picu
    • 3
  1. 1.Department of Mechanical EngineeringAhi Evran UniversityKirsehirTurkey
  2. 2.TAI - Turkish Aerospace Industries, Inc.AnkaraTurkey
  3. 3.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations