Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 8, pp 3961–3971 | Cite as

Alternative Chromium-Free Passivation Combined with Nano-electrodeposition for Electrogalvanized Steel

  • Qingyang Li
  • Fenghuan Li
  • Maozhong An
Article
  • 98 Downloads

Abstract

The combination of chromium-free passivation and nano-electrodeposition was reported to replace chromic acid passivation for electrogalvanized steel. The microstructure, corrosion resistance, scratch resistance and wear resistance of nanocrystalline zinc coating after chromium-free passivation were investigated. It was demonstrated that the nanocrystalline zinc coating after chromium-free passivation mainly consists of ZnO, Zn3(PO4)2, Ti2O3 and/or (Zn(OH)2, ZnHPO4 and TiO2), which possesses better comprehensive properties than conventional coarse-grained zinc coating after commercial trivalent chromium passivation. The reason was also discussed in detail.

Keywords

chromium-free passivation coatings corrosion and wear inorganic microstructure nano-electrodeposition steel 

Supplementary material

11665_2018_3498_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2475 kb)
11665_2018_3498_MOESM2_ESM.pdf (812 kb)
Supplementary material 2 (PDF 812 kb)
11665_2018_3498_MOESM3_ESM.pdf (54 kb)
Supplementary material 3 (PDF 54 kb)
11665_2018_3498_MOESM4_ESM.pdf (953 kb)
Supplementary material 4 (PDF 953 kb)

References

  1. 1.
    M.P. Gigandet, J. Faucheu, and M. Tachez, Formation of Black Chromate Conversion Coatings on Pure and Zinc Alloy Electrolytic Deposits: Role of the Main Constituents, Surf. Coat. Technol., 1997, 89(3), p 285–291CrossRefGoogle Scholar
  2. 2.
    C.R. Tomachuk, C.I. Elsner, A.R. Di Sarli, and O.B. Ferraz, Corrosion Resistance of Cr(III) Conversion Treatments Applied on Electrogalvanised Steel and Subjected to Chloride Containing Media, Mater. Chem. Phys., 2010, 119(1), p 19–29CrossRefGoogle Scholar
  3. 3.
    Y.T. Chang, N.T. Wen, W.K. Chen, M.D. Ger, G.T. Pan, and T.C.K. Yang, The Effects of Immersion Time on Morphology and Electrochemical Properties of the Cr(III)-Based Conversion Coatings on Zinc Coated Steel Surface, Corros. Sci., 2008, 50(12), p 3494–3499CrossRefGoogle Scholar
  4. 4.
    N.T. Wen, C.S. Lin, C.Y. Bai, and M.D. Ger, Structures and Characteristics of Cr(III)-Based Conversion Coatings on Electrogalvanized Steels, Surf. Coat. Technol., 2008, 203(3), p 317–323CrossRefGoogle Scholar
  5. 5.
    B.L. Lin, J.T. Lu, and G. Kong, Synergistic Corrosion Protection for Galvanized Steel by Phosphating and Sodium Silicate Post-sealing, Surf. Coat. Technol., 2008, 202(9), p 1831–1838CrossRefGoogle Scholar
  6. 6.
    C.G. Da Silva, I.C.P. Margarit-Mattos, O.R. Mattos, H. Perrot, B. Tribollet, and V. Vivier, The Molybdate–Zinc Conversion Process, Corros. Sci., 2009, 51(1), p 151–158CrossRefGoogle Scholar
  7. 7.
    R.P. Socha, N. Pommier, and J. Fransaer, Effect of Deposition Conditions on the Formation of Silica–Silicate Thin Films, Surf. Coat. Technol., 2007, 201(12), p 5960–5966CrossRefGoogle Scholar
  8. 8.
    C.G. Da Silva, A.N. Correia, P. de Lima-Neto, I.C.P. Margarit, and O.R. Mattos, Study of Conversion Coatings Obtained from Tungstate to Phosphoric Acid Solutions, Corros. Sci., 2005, 47(3), p 709–722CrossRefGoogle Scholar
  9. 9.
    K. Aramaki, Prevention of Zinc Corrosion in Oxygenated 0.5 M NaCl by Treatment in a Cerium (III) Nitrate Solution and Modification with Sodium Hexadecanoate, Corros. Sci., 2006, 48(10), p 3298–3308CrossRefGoogle Scholar
  10. 10.
    C.Y. Tsai, J.S. Liu, P.L. Chen, and C.S. Lin, A Two-Step Roll Coating Phosphate/Molybdate Passivation Treatment for Hot-Dip Galvanized Steel Sheet, Corros. Sci., 2010, 52(10), p 3385–3393CrossRefGoogle Scholar
  11. 11.
    R. Berger, U. Bexell, T.M. Grehk, and S.E. Hörnström, A Comparative Study of the Corrosion Protective Properties of Cr and Cr-Free Passivation Methods, Surf. Coat. Technol., 2007, 202(2), p 391–397CrossRefGoogle Scholar
  12. 12.
    A.D. Apte, V. Tare, and P. Bose, Extent of Oxidation of Cr(III) to Cr(VI) Under Various Conditions Pertaining to Natural Environment, J. Hazard. Mater., 2006, 128(2), p 164–174CrossRefGoogle Scholar
  13. 13.
    G. Kong, J.T. Lu, S.H. Zhang, C.S. Che, and H.J. Wu, A Comparative Study of Molybdate/Silane Composite Films on Galvanized Steel with Different Treatment Processes, Surf. Coat. Technol., 2010, 205(2), p 545–550CrossRefGoogle Scholar
  14. 14.
    Y.T. Tsai, K.H. Hou, C.Y. Bai, J.L. Lee, and M.D. Ger, The Influence on Immersion Time of Titanium Conversion Coatings on Electrogalvanized Steel, Thin Solid Films, 2010, 518(24), p 7541–7544CrossRefGoogle Scholar
  15. 15.
    M. Hara, R. Ichino, M. Okido, and N. Wada, Corrosion Protection Property of Colloidal Silicate Film on Galvanized Steel, Surf. Coat. Technol., 2003, 169, p 679–681CrossRefGoogle Scholar
  16. 16.
    S. Tao and D.Y. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2006, 17(1), p 65Google Scholar
  17. 17.
    Y.R. Jeng, P.C. Tsai, and S.H. Chiang, Effects of Grain Size and Orientation on Mechanical and Tribological Characterizations of Nanocrystalline Nickel Films, Wear, 2013, 303(1), p 262–268CrossRefGoogle Scholar
  18. 18.
    W. Cheng, W. Ge, Q. Yang, and X.X. Qu, Study on the Corrosion Properties of Nanocrystalline Nickel Electrodepositied by Reverse Pulse Current, Appl. Surf. Sci., 2013, 276, p 604–608CrossRefGoogle Scholar
  19. 19.
    F. Nasirpouri, M.R. Sanaeian, A.S. Samardak, E.V. Sukovatitsina, A.V. Ognev, L.A. Chebotkevich, M.G. Hosseini, and M. Abdolmaleki, An Investigation on the Effect of Surface Morphology and Crystalline Texture on Corrosion Behavior, Structural and Magnetic Properties of Electrodeposited Nanocrystalline Nickel Films, Appl. Surf. Sci., 2014, 292, p 795–805CrossRefGoogle Scholar
  20. 20.
    L. Lu, M.L. Sui, and K. Lu, Superplastic Extensibility of Nanocrystalline Copper at Room Termperature, Science, 2000, 287(5457), p 1463CrossRefGoogle Scholar
  21. 21.
    L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, Science, 2009, 323(5914), p 607–610CrossRefGoogle Scholar
  22. 22.
    M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasakib, Y. Chena, H. Kusuda, and M. Mabuchi, Relationship Between Hardness and Grain Size in Electrodeposited Copper Films, Mater. Sci. Eng. A, 2007, 457(1), p 120–126CrossRefGoogle Scholar
  23. 23.
    X. Yuan, Y. Wang, D. Sun, and H. Yu, Influence of Pulse Parameters on the Microstructure and Microhardness of Nickel Electrodeposits, Surf. Coat. Technol., 2008, 202(9), p 1895–1903CrossRefGoogle Scholar
  24. 24.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304(5669), p 422–426CrossRefGoogle Scholar
  25. 25.
    D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust, and U. Erb, The Effect of Grain Size on the Wear Properties of Electrodeposited Nanocrystalline Nickel Coatings, Scr. Mater., 2001, 44(3), p 493–499CrossRefGoogle Scholar
  26. 26.
    K. Saber, C.C. Koch, and P.S. Fedkiw, Pulse Current Electrodeposition of Nanocrystalline Zinc, Mater. Sci. Eng. A, 2003, 341(1), p 174–181CrossRefGoogle Scholar
  27. 27.
    Q.Y. Li, Z.B. Feng, L.H. Liu, J. Sun, Y.T. Qu, F.H. Li, and M.Z. An, Research on the Tribological Behavior of a Nanocrystalline Zinc Coating Prepared by Pulse Reverse Electrodeposition, RSC Adv., 2015, 5(16), p 12025–12033CrossRefGoogle Scholar
  28. 28.
    Q.Y. Li, H. Lu, J. Cui, M.Z. An, and D.Y. Li, Electrodeposition of Nanocrystalline Zinc on Steel for Enhanced Resistance to Corrosive Wear, Surf. Coat. Technol., 2016, 304, p 567–573CrossRefGoogle Scholar
  29. 29.
    G.Z. Meng, L. Zhang, Y.W. Shao, T. Zhang, and F.H. Wang, Study of the Electrochemical Behaviour of Nanocrystalline Zinc by Statistical Methods, Corros. Sci., 2009, 51(8), p 1685–1689CrossRefGoogle Scholar
  30. 30.
    M.C. Li, L.L. Jiang, W.Q. Zhang, Y.H. Qian, S.Z. Luo, and J.N. Shen, Electrochemical Corrosion Behavior of Nanocrystalline Zinc Coatings in 3.5% NaCl Solutions, J. Solid State Electrochem., 2007, 11(9), p 1319–1325CrossRefGoogle Scholar
  31. 31.
    R. Ramanauskas, L. Gudavičiūtė, R. Juškėnas, and O. Ščit, Structural and Corrosion Characterization of Pulse Plated Nanocrystalline Zinc Coatings, Electrochim. Acta, 2007, 53(4), p 1801–1810CrossRefGoogle Scholar
  32. 32.
    M.S. Chandrasekar and P. Malathy, Synergetic Effects of Pulse Constraints and Additives in Electrodeposition of Nanocrystalline Zinc: Corrosion, Structural and Textural Characterization, Mater. Chem. Phys., 2010, 124(1), p 516–528CrossRefGoogle Scholar
  33. 33.
    K.M. Youssef, C.C. Koch, and P.S. Fedkiw, Improved Corrosion Behavior of Nanocrystalline Zinc Produced by Pulse-Current Electrodeposition, Corros. Sci., 2004, 46(1), p 51–64CrossRefGoogle Scholar
  34. 34.
    H.B. Muralidhara and Y.A. Naik, Studies on Nanocrystalline Zinc Coating, Bull. Mater. Sci., 2008, 31(4), p 585–591CrossRefGoogle Scholar
  35. 35.
    S. Thomas, N. Birbilis, M.S. Venkatraman, and I.S. Cole, Self-Repairing Oxides to Protect Zinc: Review, Discussion and Prospects, Corros. Sci., 2013, 69, p 11–22CrossRefGoogle Scholar
  36. 36.
    Q.Y. Li, W. Ge, J.Q. Zhang, P.X. Yang, and M.Z. An, Synergistic Effects of Passivation Treatment and Nano-electrodeposition Technologies on Corrosion Protection Performance of the Electrogalvanized Steel, New J. Chem., 2015, 39(12), p 9903–9909CrossRefGoogle Scholar
  37. 37.
    Q.Y. Li, H. Lu, J. Cui, V. Kumar, M.Z. An, and D.Y. Li, Produce Mirror-Shining Surface of Electrogalvanized Steel with Significantly Elevated Scratch Resistance Through Combined Nanoelectrodeposition and Passivation Treatment, Wear, 2017, 376, p 1707–1712CrossRefGoogle Scholar
  38. 38.
    L.Q. Zhu, F. Yang, and N. Ding, Corrosion Resistance of the Electro-Galvanized Steel Treated in a Titanium Conversion Solution, Surf. Coat. Technol., 2007, 201(18), p 7829–7834CrossRefGoogle Scholar
  39. 39.
    M. Stern and A.L. Geary, Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104(1), p 56–63CrossRefGoogle Scholar
  40. 40.
    A. Barbucci, M. Delucchi, and G. Cerisola, Study of Chromate-Free Pretreatments and Primers for the Protection of Galvanised Steel Sheets, Prog. Org. Coat., 1998, 33(2), p 131–138CrossRefGoogle Scholar
  41. 41.
    X.W. Zhou and Y.F. Shen, Beneficial Effects of CeO2 Addition on Microstructure and Corrosion Behavior of Electrodeposited Ni Nanocrystalline Coatings, Surf. Coat. Technol., 2013, 235, p 433–446CrossRefGoogle Scholar
  42. 42.
    G.Z. Meng, L. Zhang, Y.W. Shao, T. Zhang, F.H. Wang, C.F. Dong, and X.G. Li, Effect of Refining Grain Size on the Corrosion Behavior of Cr(III) Conversion Layers on Zinc Coatings, Scr. Mater., 2009, 61(11), p 1004–1007CrossRefGoogle Scholar
  43. 43.
    L. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nanocrystalline Surface of Brass Produced by Sandblasting and Annealing, Surf. Coat. Technol., 2003, 167(2), p 188–196CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute of Advanced Wear and Corrosion Resistant and Functional MaterialsJinan UniversityGuangzhouChina
  2. 2.School of Software EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations