Advertisement

Effect of Immersion Time on Corrosion Behavior of Single-Phase Alloy and Nanocomposite Bismuth Telluride-Based Thermoelectrics in NaCl Solution

  • Mohsen K. Keshavarz
  • Arash Fattah-Alhosseini
Article
  • 52 Downloads

Abstract

The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.

Keywords

bismuth telluride corrosion behavior electrochemical impedance spectroscopy (EIS) nanocomposite thermoelectric 

Notes

Acknowledgments

Synthesis and characterization of the samples were carried out at the Prof. Turenne’s thermoelectric research laboratory in Polytechnique Montreal. The electrochemical tests were conducted at Dr. Fattah-Alhosseini’s research laboratory in Bu-Ali Sina University. The financial aid of Iran National Science Foundation (INSF) (No. 96002434) is gratefully acknowledged.

References

  1. 1.
    H.J. Goldsmid, Applications of Thermoelectricity, Methue, Wiley, 1960Google Scholar
  2. 2.
    H.J. Goldsmid, Introduction to Thermoelectricity, Springer, Heidelberg, 2010CrossRefGoogle Scholar
  3. 3.
    H.J. Goldsmid and R.T. Delves, Materials for Thermoelectric Refrigeration, GEC Journal, 1961, 28, p 102–105Google Scholar
  4. 4.
    W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Recent Advances in Thermoelectric Nanocomposites, Nano Energy, 2012, 1, p 42–56CrossRefGoogle Scholar
  5. 5.
    B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science, 2008, 320, p 634–638CrossRefGoogle Scholar
  6. 6.
    M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Effect of Suppression of Grain Growth of Hot Extruded (Bi0.2Sb0.8)(2)Te-3 Thermoelectric Alloys by MoS2 Nanoparticles, J. Electron. Mater., 2014, 43, p 2239–2246CrossRefGoogle Scholar
  7. 7.
    M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion, J. Electron. Mater., 2013, 42, p 1429–1435CrossRefGoogle Scholar
  8. 8.
    K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, and W.J. Fischer, Electrochemical Deposition of Bi2Te3 for Thermoelectric Microdevices, J. Solid State Electrochem., 2003, 7, p 714–723CrossRefGoogle Scholar
  9. 9.
    K. Tittes and W. Plieth, Electrochemical Deposition of Ternary and Binary Systems from an Alkaline Electrolyte: A Demanding Way for Manufacturing p-Doped Bismuth and Antimony Tellurides for the Use in Thermoelectric Elements, J. Solid State Electron., 2007, 11, p 155–164CrossRefGoogle Scholar
  10. 10.
    B.Y. Yoo, C.K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.P. Fleurial, and N.V. Myung, Electrochemically Deposited Thermoelectric n-Type Bi2Te3 Thin Films, Electrochim. Acta, 2005, 50, p 4371–4377CrossRefGoogle Scholar
  11. 11.
    A. Zimmer, N. Stein, L. Johann, H. Terryn, and C. Boulanger, Characterizations of Bismuth Telluride Films from Mott-Schottky Plot and Spectroscopic Ellipsometry, Surf. Interface Anal., 2008, 40, p 593–596CrossRefGoogle Scholar
  12. 12.
    F. Rosalbino, R. Carlini, G. Zanicchi, and G. Scavino, Microstructural Characterization and Corrosion Behavior of Lead, Bismuth and Antimony Tellurides Prepared by Melting, J. Alloy. Compd., 2013, 567, p 26–32CrossRefGoogle Scholar
  13. 13.
    M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Synthesis and Characterization of bismuth Telluride-Based Thermoelectric Nanocomposites Containing MoS2 Nano-Inclusions, Mater. Charact., 2014, 95, p 44–49CrossRefGoogle Scholar
  14. 14.
    M. Keshavarz Khorasgani, Synthesis and Characterization of Bismuth Telluride-Based Nanostructured Thermoelectric Composite Materials, Ecole polytechnique de Montréal, Université de Montréal, 2014, p. 126.Google Scholar
  15. 15.
    D. Vasilevskiy, J.M. Simard, F. Belanger, F. Bernier, S. Turenne, J. L’Ecuyer, Texture formation in extruded rods of (Bi,Sb)(2)(Te,Se)(3) thermoelectric alloys., Xxi International Conference on Thermoelectrics, Proceedings Ict ‘02, 2002, p 24–27.Google Scholar
  16. 16.
    M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mechanical Properties of Bismuth Telluride Based Alloys with Embedded MoS2 Nano-Particles, Mater. Des., 2016, 103, p 114–121CrossRefGoogle Scholar
  17. 17.
    E. Nes, N. Ryum, and O. Hunderi, On the Zener Drag, Acta Metall., 1985, 33, p 11–22CrossRefGoogle Scholar
  18. 18.
    M.S. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, and A.M. Stacy, Insights into the Electrodeposition of Bi2Te3, J. Electrochem. Soc., 2002, 149, p C546–C554CrossRefGoogle Scholar
  19. 19.
    G.T. Burstein, A Hundred Years of Tafel’s Equation: 1905–2005—preface, Corros. Sci., 2005, 47, p 2858–2870CrossRefGoogle Scholar
  20. 20.
    Z. Grubac and M. Metikos-Hukovic, EIS Study of Solid-State Transformations in the Passivation Process of Bismuth in Sulfide Solution, J. Electroanal. Chem., 2004, 565, p 85–94CrossRefGoogle Scholar
  21. 21.
    S. Vafaeian, A. Fattah-Alhosseini, M.K. Keshavarz, and Y. Mazaheri, The Influence of Cyclic Voltammetry Passivation on the Electrochemical Behavior of Fine and Coarse-Grained AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, J. Alloy. Compd., 2016, 677, p 42–51CrossRefGoogle Scholar
  22. 22.
    M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, Ch. 22, The Kramers–Kronig Relations, Wiley, Hoboken, 2008CrossRefGoogle Scholar
  23. 23.
    Z. Grubac and M. Metikos-Hukovic, EIS Study of Solid-State Transformations in the Passivation Process of Bismuth in Sulfide Solution, J. Electroanal. Chem., 2004, 565, p 85–94CrossRefGoogle Scholar
  24. 24.
    A. Fattah-Alhosseini and O. Imantalab, Passivation Behavior of Ultra-Fine Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580CrossRefGoogle Scholar
  25. 25.
    S. Vafaeian, A. Fattah-Alhosseini, M.K. Keshavarz, and Y. Mazaheri, The Influence of Cyclic Voltammetry Passivation on the Electrochemical Behavior of Fine and Coarse-Grained AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, J. Alloy. Compd., 2016, 677, p 42–51CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations