Journal of Materials Engineering and Performance

, Volume 27, Issue 8, pp 3877–3885 | Cite as

High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties

  • María Agustina GuitarEmail author
  • Sebastián Suárez
  • Orlando Prat
  • Martín Duarte Guigou
  • Valentina Gari
  • Gastón Pereira
  • Frank Mücklich


This work evaluates the effect of a destabilization treatment combined with a subcritical diffusion (SCD) and a subsequent quenching (Q) steps on precipitation of secondary carbides and their influence on the wear properties of HCCI (16%Cr). The destabilization of the austenite at high temperature leads to a final microstructure composed of eutectic and secondary carbides, with an M7C3 nature, embedded in a martensitic matrix. An improved wear resistance was observed in the SCD + Q samples in comparison with the Q one, which was attributed to the size of secondary carbides.


high chromium white cast iron microstructure secondary carbides precipitation solid-state transformation wear 



This work was supported by the CREATE Network Project, Horizon 2020 Program of the European Commission (RISE Project No. 644013). The authors want to thank Priv.-Doz. Dr. Jose Garcia from AB Sandvik Coromant R&D (Technology Area Manager Carbide and Sintering) for the helpful discussion and verification of some of the results.


  1. 1.
    R.J. Llewellyn, S.K. Yick, and K.F. Dolman, Scouring Erosion Resistance of Metallic Materials Used in Slurry Pump Service, Wear, 2004, 256, p 592–599CrossRefGoogle Scholar
  2. 2.
    X.H. Tang, R. Chung, D.Y. Li, B. Hinckley, and K. Dolman, Variations in Microstructure of High Chromium Cast Irons and Resultant Changes in Resistance to Wear, Corrosion and Corrosive Wear, Wear, 2009, 267, p 116–121CrossRefGoogle Scholar
  3. 3.
    C. Scandian, C. Boher, J.D.B. de Mello, and F. Rézaï-Aria, Effect of Molybdenum and Chromium Contents in Sliding Wear of High-Chromium White Cast Iron: The Relationship Between Microstructure and Wear, Wear, 2009, 267, p 401–408CrossRefGoogle Scholar
  4. 4.
    ASTM International, A532/A532M “Standard Specification for Abrasion-Resistant Cast Irons”, ASTM International, West Conshohocken, 2003, p 1–4Google Scholar
  5. 5.
    X. Zhi, J. Xing, Y. Gao, H. Fu, J. Peng, and B. Xiao, Effect of Heat Treatment on Microstructure and Mechanical Properties of a Ti-Bearing Hypereutectic High Chromium White Cast Iron, Mater. Sci. Eng. A, 2008, 487, p 171–179CrossRefGoogle Scholar
  6. 6.
    ASM International, ed., “ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys”, 10th ed., ASM International, 1990Google Scholar
  7. 7.
    D. Li, L. Liu, Y. Zhang, C. Ye, X. Ren, Y. Yang et al., Phase Diagram Calculation of High Chromium Cast Irons and Influence of Its Chemical Composition, Mater. Des., 2009, 30, p 340–345CrossRefGoogle Scholar
  8. 8.
    A. Bedolla-Jacuinde, R. Correa, I. Mejía, J.G. Quezada, and W.M. Rainforth, The Effect of Titanium on the Wear Behaviour of a 16%Cr White Cast Iron Under Pure Sliding, Wear, 2007, 263, p 808–820CrossRefGoogle Scholar
  9. 9.
    R.J. Chung, X. Tang, D.Y. Li, B. Hinckley, and K. Dolman, Effects of Titanium Addition on Microstructure and Wear Resistance of Hypereutectic High Chromium Cast Iron Fe-25wt.%Cr-4wt.%C, Wear, 2009, 267, p 356–361CrossRefGoogle Scholar
  10. 10.
    J. Wang, R.L. Zuo, Z.P. Sun, C. Li, H.H. Liu, H.S. Yang et al., Influence of Secondary Carbides Precipitation and Transformation on Hardening Behavior of a 15 Cr-1 Mo-1.5 v White Iron, Mater. Charact., 2005, 55, p 234–240CrossRefGoogle Scholar
  11. 11.
    M. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski, Microstructure and Mechanical Properties of Fe–Cr–C–Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48CrossRefGoogle Scholar
  12. 12.
    S.H. Mousavi Anijdan, A. Bahrami, N. Varahram, and P. Davami, Effects of Tungsten on Erosion–Corrosion Behavior of High Chromium White Cast Iron, Mater. Sci. Eng. A, 2007, 454–455, p 623–628CrossRefGoogle Scholar
  13. 13.
    J. Wang, J. Xiong, H. Fan, H.-S. Yang, H.-H. Liu, and B.-L. Shen, Effects of High Temperature and Cryogenic Treatment on the Microstructure and Abrasion Resistance of a High Chromium Cast Iron, J. Mater. Process. Technol., 2009, 209, p 3236–3240CrossRefGoogle Scholar
  14. 14.
    D. Kopyci, E. Guzik, D. Siekaniec, and A. Szcz, Analysis of the High Chromium Cast Iron Microstructure after the Heat Treatment, Arch. Foundry Eng., 2014, 14, p 43–46CrossRefGoogle Scholar
  15. 15.
    A. Wiengmoon, J.T.H. Pearce, and T. Chairuangsri, Relationship Between Microstructure, Hardness and Corrosion Resistance in 20 wt.% Cr, 27 wt.% Cr and 36 wt.% Cr High Chromium Cast Irons, Mater. Chem. Phys., 2011, 125, p 739–748CrossRefGoogle Scholar
  16. 16.
    S.D. Carpenter, D. Carpenter, and J.T.H. Pearce, XRD and Electron Microscope Study of an As-Cast 26.6% Chromium White Iron Microstructure, Mater. Chem. Phys., 2004, 85, p 32–40CrossRefGoogle Scholar
  17. 17.
    M. Duarte, J. Molina, R. Prieto, E. Louis, and J. Narciso, Effects of Particle Size and Volume Fraction on Wear Behavior of Aluminum Alloys/Ceramic Particles Composites, Solidification Processing of Metal Matrix Composite, 2006 TMS Annual Meeting, San Antonio, TX, 2006, p 249–257Google Scholar
  18. 18.
    C. García-Cordovilla, J. Narciso, and E. Louis, Abrasive Wear Resistance of Aluminium Alloy/Ceramic Particulate Composites, Wear, 1996, 192, p 170–177CrossRefGoogle Scholar
  19. 19.
    A. Demir, N. Altinkok, F. Findik, and I. Ozsert, The Wear Behaviour of Dual Ceramic Particles (Al2O3/SiC) Reinforced Aluminium Matrix Composites, Key Eng. Mater., 2004, 264–268, p 1079–1082CrossRefGoogle Scholar
  20. 20.
    S. Kumar, R.S. Panwar, and O.P. Pandey, Effect of Dual Reinforced Ceramic Particles on High Temperature Tribological Properties of Aluminum Composites, Ceram. Int., 2013, 39, p 6333–6342CrossRefGoogle Scholar
  21. 21.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 1992CrossRefGoogle Scholar
  22. 22.
    Z. Sun, R. Zuo, C. Li, B. Shen, J. Yan, and S. Huang, TEM Study on Precipitation and Transformation of Secondary Carbides in 16Cr-1Mo-1Cu White Iron Subjected to Subcritical Treatment, Mater. Charact., 2004, 53, p 403–409CrossRefGoogle Scholar
  23. 23.
    M. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19, p 473–481CrossRefGoogle Scholar
  24. 24.
    A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds, and J.T.H. Pearce, Microstructural and Crystallographical Study of Carbides in 30wt.%Cr Cast Irons, Acta Mater., 2005, 53, p 4143–4154CrossRefGoogle Scholar
  25. 25.
    A.E. Karantzalis, A. Lekatou, and H. Mavros, Microstructural Modifications of As-Cast High-Chromium White Iron by Heat Treatment, J. Mater. Eng. Perform., 2009, 18, p 174–181CrossRefGoogle Scholar
  26. 26.
    Ö.N. Doğan, J.A. Hawk, and G. Laird, Solidification Structure and Abrasion Resistance of High Chromium White Irons, Metall. Mater. Trans. A, 1997, 28, p 1315–1328CrossRefGoogle Scholar
  27. 27.
    H. Gasan and F. Erturk, Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques, Metall. Mater. Trans. A, 2013, 44, p 4993–5005CrossRefGoogle Scholar
  28. 28.
    J.Q. Xu, Y.Y. Chen, W. Wang, K.P. Liu, H.S. Liu, and Y.D. Xiao, Sliding Friction Properties of Austenite-and Martensite-Based White Cast Iron Containing 8.5% Chromium, J. Mater. Sci., 2010, 45, p 6108–6114CrossRefGoogle Scholar
  29. 29.
    J.D.B. DeMello, M. Durand-Charre, and S. Hamar-Thibault, Solidification and Solid State Transformations During Cooling of Chromium-Molybdenum White Cast Irons, Metall. Trans. A, 1983, 14, p 1793–1801CrossRefGoogle Scholar
  30. 30.
    J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, Correlation Between Mechanical Properties and Retained Austenite Characteristics in a Low-Carbon Medium Manganese Alloyed Steel Plate, Mater. Charact., 2015, 106, p 108–111CrossRefGoogle Scholar
  31. 31.
    K.K. Chawla, Composite Materials: Science and Engineering, 3rd ed., Springer, New York, 2012CrossRefGoogle Scholar
  32. 32.
    H. Czichos and K.-H. Habig, Tribologie Handbook, 2nd ed., Friedr. Vieweg & Son Verlag, 2003.Google Scholar
  33. 33.
    S. Atapek and S. Polat, A Study of Wear of High-chromium Cast Iron Under Dry Friction, Met. Sci. Heat Treat., 2013, 55, p 181–183CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • María Agustina Guitar
    • 1
    Email author
  • Sebastián Suárez
    • 1
  • Orlando Prat
    • 2
  • Martín Duarte Guigou
    • 3
    • 4
  • Valentina Gari
    • 3
  • Gastón Pereira
    • 4
  • Frank Mücklich
    • 1
  1. 1.Department of Materials ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Departamento de Ingeniería de MaterialesUniversidad de ConcepciónConcepciónChile
  3. 3.Programa de Ingeniería de Materiales, Facultad de Ingeniería y TecnologíasUniversidad Católica del UruguayMontevideoUruguay
  4. 4.Laboratorio de Desarrollo de Nuevos MaterialesTubacero S.A.MontevideoUruguay

Personalised recommendations