The Effect of Mo Particles Addition in Ag-Cu-Ti Filler Alloy on Ti(C,N)-Based Cermet/45 Steel-Brazed Joints

  • Hu He
  • Xueming Du
  • Xiaokai Huang
  • Weijian Xu
  • Zhenhua Yao
Article
  • 20 Downloads

Abstract

Reliable brazing of Ti(C,N)-based cermet and 45 steel was successfully achieved by using the Mo-particle-reinforced Ag-Cu-Ti composite filler. The effects of Mo content on the interfacial microstructure and mechanical properties of Ti(C,N)-based cermet/45 steel joints were analyzed. The results showed that the joint microstructure was primarily composed of Ni3Ti+Cu3Ti2, Ag(s,s)+Cu(s.s), CuTi+Mo, Ti-based solid solution, and FeTi+Fe2Ti. With the increase in Mo content in filler, the thickness of the Ni3Ti+Cu3Ti2 layer adjacent to the Ti(C,N)-based cermet decreases, while more blocky Ti-Cu intermetallic were observed in the brazing seam. The shear strength of the joint could be significantly improved by adding suitable amounts of Mo into the Ag-Cu-Ti filler, and the peak value of 263 MPa was achieved when the alloys were brazed with Ag-Cu-Ti+8wt.%Mo composite filler at 920 °C for 20 min.

Keywords

brazing composite filler Ti(C,N)-based cermet 

Notes

Acknowledgments

This work was supported by Independent innovation fund of Wuhan University of Technology (No. 163101005). This work was also supported by Analytical and testing center in Wuhan University of Technology.

References

  1. 1.
    P. Ettmayer, H. Kolaska, W. Lengauer et al., Ti(C,N) Cermets—Metallurgy and Properties, Int. J. Refract. Metal Hard Mater., 1995, 13(6), p 343–351CrossRefGoogle Scholar
  2. 2.
    L. Tang, J. Xiong, Z. Guo et al., Effect of WC/Mo 2 C Ratio on the Erosion Behavior of Ti(C,N)-Based Cermets, Int. J. Refract. Metal Hard Mater., 2014, 45, p 102–108CrossRefGoogle Scholar
  3. 3.
    D. Ye, W. Xiong, X. Zhang et al., Microstructure and Shear Strength of the Brazed Joint of Ti(C,N)-Based Cermet to Steel, Rare Met., 2010, 29(1), p 72–77CrossRefGoogle Scholar
  4. 4.
    H. Chen, K. Feng, J. Xiong, et al. Vacuum Brazing of Ti(C,N)-Based Cermets and 3Cr13 Stainless Steel. J. Sichuan Univ. (Eng. Sci. Ed.), 2012: S1Google Scholar
  5. 5.
    M.W. Finnis, The Theory of Metal–Ceramic Interfaces, J. Phys. Condens. Matter, 1996, 8(32), p 5811CrossRefGoogle Scholar
  6. 6.
    G.B. Niu, D.P. Wang, Z.W. Yang et al., Microstructure and Mechanical Properties of Al2O3 Ceramic and TiAl Alloy Joints Brazed with Ag-Cu-Ti Filler Metal, Ceram. Int., 2016, 42(6), p 6924–6934CrossRefGoogle Scholar
  7. 7.
    J.C. Feng and L.X. Zhang, Interface Structure and Mechanical Properties of the Brazed Joint of TiC Cermet and Steel, J. Eur. Ceram. Soc., 2006, 26, p 1287CrossRefGoogle Scholar
  8. 8.
    N. Wang, D.P. Wang, Z.W. Yang et al., Zirconia Ceramic and Nb Joints Brazed with Mo-Particle-Reinforced Ag-Cu-Ti Composite Fillers: Interfacial Microstructure and Formation Mechanism, Ceram. Int., 2017, 43, p 9636–9643CrossRefGoogle Scholar
  9. 9.
    D. Fan, J. Huang, Y. Wang et al., Active Brazing of Carbon Fiber Reinforced SiC Composite and 304 Stainless Steel with Ti-Zr-Be, Mater. Sci. Eng. A, 2014, 617, p 66–72CrossRefGoogle Scholar
  10. 10.
    G.B. Lin, J.H. Huang, and H. Zhang, Joints of Carbon Fiber-Reinforced SiC Composites to Ti-Alloy Brazed by Ag-Cu-Ti Short Carbon Fibers, J. Mater. Process. Technol., 2007, 189, p 256–261CrossRefGoogle Scholar
  11. 11.
    Y.X. Zhao, M.R. Wang, J. Cao et al., Brazing TC4 Alloy to Si3N4 Ceramic Using Nano-Si3N4 Reinforced AgCu Composite Filler, Mater. Des., 2015, 76, p 40–46CrossRefGoogle Scholar
  12. 12.
    X.G. Song, J. Cao, Y.F. Wang et al., Effect of Si3N4-Particles Addition in Ag-Cu-Ti Filler Alloy on Si3N4/TiAl Brazed Joint, Mater. Sci. Eng. A, 2011, 528(15), p 5135–5140CrossRefGoogle Scholar
  13. 13.
    Y. Qin, Z. Yu, Joining of C/C Composite to TC4 Using SiC Particle-Reinforced Brazing Alloy, Mater. Charact., 2010, 61(6), p 635–639.CrossRefGoogle Scholar
  14. 14.
    W. Ding, J. Xu, Z. Chen et al., A Study on Effects of TiB2 Contents on Reactive Products and Compressive Strength of Brazed CBN Grains, Surf. Interface Anal., 2009, 41(3), p 238–243CrossRefGoogle Scholar
  15. 15.
    W.F. Ding, J.H. Xu, Z.Z. Chen et al., Microstructure Characteristics of CBN/Steel Joints Brazed with TiB2 Modified Active Filler, Mater. Sci. Technol., 2009, 25(12), p 1448–1452CrossRefGoogle Scholar
  16. 16.
    N. Wang, D.P. Wang, Z.W. Yang et al., Interfacial Microstructure and Mechanical Properties of Zirconia Ceramic and Niobium Joints Vacuum Brazed with Two Ag-Based Active Filler Metals, Ceram. Int., 2016, 42(11), p 12815–12824CrossRefGoogle Scholar
  17. 17.
    Y. He, J. Zhang, Y. Sun et al., Microstructure and Mechanical Properties of the Si3N4/42CrMo Steel Joints Brazed with Ag-Cu-Ti + Mo Composite Filler, J. Eur. Ceram. Soc., 2010, 30(15), p 3245–3251CrossRefGoogle Scholar
  18. 18.
    M. Naidoo, O. Johnson, I. Sigalas et al., Influence of Tantalum on the Microstructure and Properties of Ti(C,N)-Ni Cermets, Int. J. Refract. Metal Hard Mater., 2014, 42, p 97–102CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Y. Zheng, J. Zhong et al., Effect of Carbon Content and Cooling Mode on the Microstructure and Properties of Ti(C,N)-Based Cermets, Int. J. Refract. Metal Hard Mater., 2009, 27(6), p 1009–1013CrossRefGoogle Scholar
  20. 20.
    Y. Zheng, J. Zhong, X. Lv et al., Microstructure and Performance of Functionally Graded Ti(C,N)-Based Cermets Prepared by Double-Glow Plasma Carburization, Int. J. Refract. Metal Hard Mater., 2014, 44, p 109–112CrossRefGoogle Scholar
  21. 21.
    B. Huang, W. Xiong, Q. Yang et al., Preparation, Microstructure and Mechanical Properties of Multicomponent Ni3Al-Bonded Cermets, Ceram. Int., 2014, 40(9), p 14073–14081CrossRefGoogle Scholar
  22. 22.
    S.Y. Ahn and S. Kang, Formation of Core/Rim Structures in Ti(C,N)-WC-Ni Cermets via a Dissolution and Precipitation Process, J. Am. Ceram. Soc., 2000, 83(6), p 1489–1494CrossRefGoogle Scholar
  23. 23.
    L.X. Zhang, J.H. Yang, Z. Sun et al., Vacuum Brazing Nb and BN-SiO2 Ceramic Using a Composite Interlayer with Network Reinforcement Architecture, Ceram. Int., 2017, 43(11), p 8126–8132CrossRefGoogle Scholar
  24. 24.
    Q. Miao, W. Ding, Y. Zhu et al., Joining Interface and Compressive Strength of Brazed Cubic Boron Nitride Grains with Ag-Cu-Ti/TiX Composite Fillers, Ceram. Int., 2016, 42(12), p 13723–13737CrossRefGoogle Scholar
  25. 25.
    Q. Miao, W. Ding, Y. Zhu et al., Brazing of CBN Grains with Ag-Cu-Ti/TiX Composite Filler—The Effect of TiX Particles on Microstructure and Strength of Bonding Layer, Mater. Des., 2016, 98, p 243–253CrossRefGoogle Scholar
  26. 26.
    J.Y. Liu, T.P. Wang, C.F. Liu et al., Microstructure and Mechanical Properties of Porous Si3N4/Invar Joints Brazed with Ag-Cu-Ti+Mo/Cu/Ag-Cu Multi-layered Composite Filler, Ceram. Int., 2017, 33, p 98–103Google Scholar
  27. 27.
    Y. Jing, Q. Yang, W. Xiong et al., Microstructure and Shear Strength of Brazed Joints Between Ti(C,N)-Based Cermet and Steel with CuAgTi Filler Metal, J. Alloys Compd., 2016, 682, p 525–530CrossRefGoogle Scholar
  28. 28.
    J.L. Murray, The Cu−Ti (Copper-Titanium) System, J. Phase Equilib., 1983, 4(1), p 81–95Google Scholar
  29. 29.
    P. Li, J. Ye, Y. Liu et al., Study on the Formation of Core–Rim Structure in Ti(CN)-Based Cermets, Int. J. Refract. Metal Hard Mater., 2012, 35, p 27–31CrossRefGoogle Scholar
  30. 30.
    K.P. Gupta, The Cu-Ni-Ti (Copper-Nickel-Titanium) System, Journal of Phase Equilibria and Diffusion, 2002, 23(6), p 541CrossRefGoogle Scholar
  31. 31.
    G.B. Niu, D.P. Wang, Z.W. Yang et al., Microstructure and Mechanical Properties of Al2O3/TiAl Joints Brazed with B Powders Reinforced Ag-Cu-Ti Based Composite Fillers, Ceram. Int., 2017, 43(1), p 439–450CrossRefGoogle Scholar
  32. 32.
    H. Okamoto, Fe-Ti (Iron-Titanium), J. Phase Equilib., 1996, 17(4), p 369CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Hu He
    • 1
  • Xueming Du
    • 1
  • Xiaokai Huang
    • 1
  • Weijian Xu
    • 1
  • Zhenhua Yao
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations