Advertisement

The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy

  • N. A. KazarinovEmail author
  • A. D. Evstifeev
  • Y. V. Petrov
  • S. A. Atroshenko
  • R. R. Valiev
Article
  • 91 Downloads

Abstract

In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material’s behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples’ surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.

Keywords

erosion high-pressure torsion titanium ultrafine-grained materials 

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (16-31-60003, 16-31-60047). Y. Petrov acknowledges support from the Russian Science Foundation (17-11-01053) for chapter 4 creation.

References

  1. 1.
    W.N. Sharpe, Ed., Springer Handbook of Experimental Solid Mechanics, Springer, US, 2008Google Scholar
  2. 2.
    K. Ravi-Chandar and W.G. Knauss, An Experimental Investigation into Dynamic Fracture—I. Crack Initiation and Crack Arrest, Int. J. Fract., 1984, 25, p 247–262CrossRefGoogle Scholar
  3. 3.
    A.M. Bragov, Yu.V. Petrov, B.L. Karihaloo, A.Yu. Konstantinov, D.A. Lamzin, A.K. Lomunov, and I.V. Smirnov, Dynamic Strength and Toughness of an Ultra High Performance Fibre Reinforced Concrete, Eng. Fract. Mech., 2013, 110, p 477–488CrossRefGoogle Scholar
  4. 4.
    R. Valiev, Nanostructuring of Metals by Severe Plastic, Nat. Mater., 2004, 3, p 511–516CrossRefGoogle Scholar
  5. 5.
    D.G. Morris, Mechanical Behaviour of Nanostructured Materials, Trans Tech, Uetikon, Zürich, 1998Google Scholar
  6. 6.
    A.B. Witney, P.G. Sanders, J.R. Weertman, and J.A. Eastman, Fatigue of Nanocrystalline Copper, Scr. Metall. Mater., 1995, 33(12), p 2025–2030CrossRefGoogle Scholar
  7. 7.
    M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, and R.Z. Valiev, Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al Alloy Processed Via ECAP-PC, J. Mater. Sci., 2013, 48(13), p 4501–4509CrossRefGoogle Scholar
  8. 8.
    N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, V.A. Lashkov, R.Z. Valiev, and A.S. Bondarenko, Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion, J. Mater. Eng. Perform, 2016, 25, p 3573–3579CrossRefGoogle Scholar
  9. 9.
    P. Verleysen, W. Oelbrandt, S. Naghdy, and L. Kestens, Static and Dynamic Tensile Behaviour of Aluminium Processed by High Pressure Torsion, EPJ Web of Conferences, Vol 94, 2015.  https://doi.org/10.1051/epjconf/20159402012.
  10. 10.
    N. Herzig, L.W. Meyer, D. Musch, T. Halle, V.A. Skripnyak, E.G. Skripnyak, S.V. Razorenov, and L. Krüger, The Mechanical Behaviour of Ultra Fine Grained Titanium Alloys at High Strain Rates, 3rd International Conference on High Speed Forming, March 11-12, 2008 (Dortmund), 2008, p 65–74Google Scholar
  11. 11.
    R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  12. 12.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRefGoogle Scholar
  13. 13.
    H. Miura, G. Yu, and X. Yang, Multi-Directional Forging of AZ61 Mg Alloy Under Decreasing Temperature Conditions and Improvement of Its Mechanical Properties, Mater. Sci. Eng., A, 2011, 528(22), p 6981–6992CrossRefGoogle Scholar
  14. 14.
    Y. Saito, H. Utsunomiya, N. Tsutji, and T. Sakaim, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRefGoogle Scholar
  15. 15.
    C.P. Wang, F.G. Li, L. Wang, and H.J. Qiao, Review on Modified and Novel Techniques of Severe Plastic Deformation, Sci. China Tech. Sci., 2012, 55, p 2377–2390CrossRefGoogle Scholar
  16. 16.
    T.C. Lowe and Y.T. Zhu, Commercialization of Nanostructured Metals Produced by Severe Plastic Deformation Processing, Adv. Eng. Mater., 2003, 5, p 373–378CrossRefGoogle Scholar
  17. 17.
    R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova, Nanostructured Titanium for Biomedical Applications, Adv. Eng. Mater., 2008, 10(8), p B15CrossRefGoogle Scholar
  18. 18.
    I.P. Semenova, G.I. Raab, and R.Z. Valiev, Nanostructured Titanium Alloys: New Developments and Application Prospects, Nanotechnol. Russ, 2014, 9(5–6), p 311–324CrossRefGoogle Scholar
  19. 19.
    W. Tabakoff, High-Temperature Erosion Resistance Coatings for Use in Turbomachinery, Wear, 1995, 186–187, p 224–229CrossRefGoogle Scholar
  20. 20.
    Y.V. Petrov, N.F. Morozov, and V.I. Smirnov, Structural Macromechanics Approach in Dynamics of Fracture, Fatigue Fract. Eng. Mater. Struct., 2003, 26(4), p 363–372CrossRefGoogle Scholar
  21. 21.
    I.M. Hutchings, Prediction of the Resistance of Metals to Erosion by Solid Particles, Wear, 1975, 35, p 371–374CrossRefGoogle Scholar
  22. 22.
    G.L. Sheldon, Effects of Surface Hardness and Other Material Properties on Erosive Wear of Metals by Solid Particles, J. Eng. Mater. Technol., 1977, 99(2), p 133–137CrossRefGoogle Scholar
  23. 23.
    I. Finnie, Some Observations on the Erosion of Ductile Metals, Wear, 1972, 19, p 81–90CrossRefGoogle Scholar
  24. 24.
    H.C. Meng and K.C. Ludema, Wear Models and Predictive Equations: Their Form and Content, Wear, 1995, 181–183, p 443–457CrossRefGoogle Scholar
  25. 25.
    M. Whittaker, Titanium in the Gas Turbine Engine, Advances in Gas Turbine Technology, Dr. Ernesto Benini, Ed., In Tech, 2011,  https://doi.org/10.5772/21524
  26. 26.
    C.C. Koch, Optimization of Strength and Ductility in Nanocrystalline and Ultrafine Grained Metals, Scr. Mater., 2003, 49, p 657–662CrossRefGoogle Scholar
  27. 27.
    A.A. Hamed, W. Tabakoff, R.R. Rivir, K. Das, and P. Arora, Turbine Blade Surface Deterioration by Erosion, J. Turbomach., 2005, 127, p 445–452CrossRefGoogle Scholar
  28. 28.
    A.V. Levy and G. Hickey, Liquid-Solid Particle Slurry Erosion of Steels, Wear, 1987, 117, p 129–146CrossRefGoogle Scholar
  29. 29.
    D.G. Rickerby and N.H. Macmillan, The Erosion of Aluminum by Solid Particle Impingement at Normal Incidence, Wear, 1980, 60, p 369–382CrossRefGoogle Scholar
  30. 30.
    H. Itoga, K. Tokaji, M. Nakajima, and H.-N. Ko, Effect of Surface Roughness on Step-Wise S-N Characteristics in High Strength Steel, Int. J. Fatigue, 2003, 25, p 379–385CrossRefGoogle Scholar
  31. 31.
    J.T. Black and R.A. Kohser, DeGarmo’s Materials and Processes in Manufacturing, 11th ed., L. Ratts, Ed., Wiley, 2011Google Scholar
  32. 32.
    W. Sage and G.P. Tilly, The Significance of Particle Size in Sand Erosion of Small Gas Turbines, J. R. Aero. Soc., 1969, 73, p 427–428Google Scholar
  33. 33.
    E. Avcu, S. Fidan, Y. Yildiran, and T. Sınmazcelik, Solid Particle Erosion Behaviour of Ti6Al4V, Tribol. Mater. Surf. Interfaces, 2013, 7(4), p 201–210CrossRefGoogle Scholar
  34. 34.
    G.V. Garkushin, O.N. Ignatova, G.I. Kanel, L.W. Meyer, and S.V. Razorenov, Submicrosecond Strength of Ultrafine-Grained Materials, Mechanics of Solids, 2010, 45(4), p 624–632CrossRefGoogle Scholar
  35. 35.
    C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon, Tribology Testing of Ultrafine-Grained Ti Processed by High-Pressure Torsion with Subsequent Coating, J. Mater. Sci., 2013, 48(13), p 4742–4748CrossRefGoogle Scholar
  36. 36.
    T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, The Contribution of Grain Boundary Sliding in Tensile Deformation of an Ultrafine-Grained Aluminum Alloy Having High Strength and High Ductility, J. Mater. Sci., 2015, 50, p 3549–3561CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • N. A. Kazarinov
    • 1
    Email author
  • A. D. Evstifeev
    • 1
  • Y. V. Petrov
    • 1
    • 2
  • S. A. Atroshenko
    • 2
  • R. R. Valiev
    • 3
  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia
  2. 2.Institute of Problems of Mechanical Engineering RASSaint PetersburgRussia
  3. 3.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations