Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy

  • Jingling Ma
  • Guangxin Wang
  • Yaqiong Li
  • Wuhui Li
  • Fengzhang Ren
Article
  • 21 Downloads

Abstract

The application of Mg–air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg–air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg−1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and “cracked mud” layer. AZ61 alloy can be used as the anode for Mg–air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

Keywords

corrosion discharge inhibition efficiency Mg–air battery 

Notes

Acknowledgments

This work was supported by the Chinese 02 Special Fund (Grant No. 2017ZX02408003), the Chinese 1000 Plan for High Level Foreign Experts (Grant No. WQ20154100278), and the Innovative Research Team Program of Henan University of Science and Technology (Grant No. 2015XTD006).

References

  1. 1.
    F. Cheng and J. Chen, Chem, Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts, Soc. Rev., 2012, 41, p 2172–2192CrossRefGoogle Scholar
  2. 2.
    H.Q. Xiong, H.L. Zhu, J. Luo, K. Yu, C.L. Shi, H.J. Fang, and Y. Zhang, Effects of Heat Treatment on the Discharge Behavior of Mg–6wt.%Al–1wt.%Sn Alloy as Anode For Magnesium-Air Batteries, JMEPEG, 2017, 26, p 2901–2911CrossRefGoogle Scholar
  3. 3.
    G. Huang, Y. Zhao, Y. Wang, H. Zhang, and F. Pan, Performance of Mg–Air Battery Based on AZ31 Alloy Sheet with Twins, Mater. Lett., 2013, 113, p 46–49CrossRefGoogle Scholar
  4. 4.
    J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg–4 wt.%Ga–2 wt.%Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2011, 56, p 8224–8231CrossRefGoogle Scholar
  5. 5.
    Motohiro Yuasa, Xinsheng Huang, Kazutaka Suzuki, Mamoru Mabuchi, and Yasumasa Chino, Effects of Microstructure on Discharge Behavior of AZ91 Alloy as Anode for Mg–Air Battery Materials Transactions, Mater. Trans., 2014, 55, p 1202–1207CrossRefGoogle Scholar
  6. 6.
    N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb–In Alloys as Anodes for Mg–Air Battery, Electrochim. Acta, 2014, 149, p 193–205CrossRefGoogle Scholar
  7. 7.
    T.X. Zheng, Y.B. Hu, and Y.X. Zhang, Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries, Mater. Des., 2018, 137, p 245–255CrossRefGoogle Scholar
  8. 8.
    H.Q. Xiong, K. Yu, and X. Yin, Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt.%Al-1 wt.%Sn alloy as anode for Mg-air primary battery, J. Alloy. Compd., 2017, 708, p 652–661CrossRefGoogle Scholar
  9. 9.
    K. Yu, Q. Huang, J. Zhao, and Y. Dai, Electrochemical Properties of Magnesium Alloy Anodes Discharged in Seawater, T. Nonferr. Metal. Soc., 2012, 22, p 2184–2190CrossRefGoogle Scholar
  10. 10.
    Y. Lv, Y. Xu, and D. Cao, The Electrochemical Behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in Sodium Chloride Solution, J. Power Sources, 2011, 196, p 8809–8814CrossRefGoogle Scholar
  11. 11.
    M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456CrossRefGoogle Scholar
  12. 12.
    P. Wang, J. Li, Y. Guo, Z. Yang, F. Xia, and J. Wang, Effect of Sn on Microstructure and Electrochemical Properties of Mg Alloy Anode Materials, Rare Metal Mat. Eng, 2012, 41, p 2095–2099CrossRefGoogle Scholar
  13. 13.
    F.E. Heakal, N.S. Tantawy, and O.S. Shehata, Impact of Chloride and Fluoride Additions on Surface Reactivity and Passivity of AM60 Magnesium Alloy in Buffer Solution, Corros. Sci., 2012, 64, p 153–163CrossRefGoogle Scholar
  14. 14.
    J. Du, Z. Wang, and Y. Niu, Double Liquid Electrolyte for Primary Mg Batteries, J. Power Sources, 2014, 247, p 840–844CrossRefGoogle Scholar
  15. 15.
    J. Ma, Y. Lin, X. Chen, B. Zhao, and J. Zhang, Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions, Food Hydrocolloids, 2014, 38, p 119–128CrossRefGoogle Scholar
  16. 16.
    U.S. Toti and T.M. Aminabhavi, Different Viscosity Grade Sodium Alginate and Modified Sodium Alginate Membranes in Pervaporation Separation of Water + Acetic Acid and Water + Isopropanol Mixtures, J. Membr. Sci., 2004, 228, p 199–208CrossRefGoogle Scholar
  17. 17.
    P. Zhang, Q. Li, L.Q. Li, X.X. Zhang, and Z.W. Wang, A Study Of Environment-Friendly Synergistic Inhibitors for AZ91D Magnesium Alloy, Anodes for Refuelable Magnesium-Air Batteries, Mater. Corrosion, 2013, 71, p 14–20Google Scholar
  18. 18.
    R.P. Hamlen, E.C. Jerabek, J.C. Ruzzo, and E.G. Siwek, Anodes for Refuelable Magnesium-Air Batteries, J. Electrochem. Soc., 1969, 116, p 1588–1592CrossRefGoogle Scholar
  19. 19.
    M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456CrossRefGoogle Scholar
  20. 20.
    M.A. Amin, S.S. Abd El Rehim, and E.E.F. El Sherbini, AC and DC Studies of the Pitting Corrosion of Al in Perchlorate Solutions, Electrochim. Acta, 2006, 51, p 4754–4764CrossRefGoogle Scholar
  21. 21.
    M.A. Amina, S.S. Abd El-Rehima, E.E.F. El-Sherbinia, S.R. Mahmoudb, and M.N. Abbasc, Pitting Corrosion Studies on Al and Al–Zn alloys in SCN − solutions, Electrochim. Acta, 2009, 54, p 4288–4296CrossRefGoogle Scholar
  22. 22.
    M. Trueba and S.P. Trasatti, Study of Al alloy corrosion in neutral NaCl by the pitting scan technique, Mater. Chem. Phys. Mater. Chem. Phys., 2010, 121, p 523–533CrossRefGoogle Scholar
  23. 23.
    L.F. Hou, N. Dang, H.Y. Yang, B.S. Liu, Y.Y. Li, Y.H. Wei, and X.B. Chen, The Electrochemical Society A Combined Inhibiting Effect of Sodium Alginate and Sodium Phosphate on the Corrosion of Magnesium Alloy AZ31 in NaCl Solution, J. Electrochem. Soc., 2016, 163, p C486–C494CrossRefGoogle Scholar
  24. 24.
    V. Moutarlier, M.P. Gigandet, B. Normand, and J. Pagetti, EIS Characterisation of Anodic Films Formed on 2024 Aluminum Alloy in Sulphuric Acid Containing Molybdate or Permanganate Species, Corros. Sci., 2005, 47, p 937–945CrossRefGoogle Scholar
  25. 25.
    X. Chen, W.M. Tian, S.M. Li, M. Yu, and J.H. Liu, Effect of Temperature on Corrosion Behavior of 3003 Aluminum Alloy in Ethylene Glycol–Water Solution, Chin. J. Aeronaut., 2016, 29, p 114–121Google Scholar
  26. 26.
    D.A. Dornbusch, R. Hilton, M.J. Gordon, and G.J. Suppes, Effects of Sonication on EIS Results for Zinc Alkaline Batteries, ECS Electrochem. Lett., 2013, 2, p A89–A96CrossRefGoogle Scholar
  27. 27.
    M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, J.M. Sánchez-Amaya, and L. González-Rovira, Using EIS to Analyse Samples of Al-Mg alloy AA5083 Treated by Thermal Activation in Cerium Salt Baths, Corros. Sci., 2008, 50, p 1376–1384CrossRefGoogle Scholar
  28. 28.
    F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, and S. Delfino, Application of EIS to Assess the Effect of Rare Earths Small Addition on the Corrosion Behaviour of Zn-5% Al (Galfan) Alloy in Neutral Aerated Sodium Chloride Solution, Electrochim. Acta, 2009, 54, p 1204–1209CrossRefGoogle Scholar
  29. 29.
    W.R. Osório, L.C. Peixoto, and A. Garcia, The Effects of Ag Content and Dendrite Spacing on the Electrochemical Behavior of Pb-Ag Alloys for Pb-Acid Battery Components, J. Power Sources, 2013, 238, p 324–335CrossRefGoogle Scholar
  30. 30.
    O. Lopez-Garrity and G.S. Frankel, Corrosion Inhibition of AA2024-T3 By Sodium Silicate, Electrochim. Acta, 2014, 130, p 9–21CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jingling Ma
    • 1
    • 2
  • Guangxin Wang
    • 1
  • Yaqiong Li
    • 1
  • Wuhui Li
    • 2
  • Fengzhang Ren
    • 2
  1. 1.Research Center for High Purity MaterialsHenan University Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Nonferrous Metals, Henan ProvinceHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations