Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

  • S. Chenna Krishna
  • N. K. Karthick
  • Abhay K. Jha
  • Bhanu Pant
  • Roy M. Cherian
Article
  • 21 Downloads

Abstract

In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700–1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700–800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900–1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

Keywords

hot rolling nitrogen-alloyed austenitic stainless steel strengthening 

Notes

Acknowledgment

The authors would like to thank their colleagues at Material Characterization Division (VSSC) for their support in mechanical testing, metallography and XRD measurement of the samples. The authors would also like to thank Director, Vikram Sarabhai Space Centre, Thiruvananthapuram, for his kind permission to publish this work.

References

  1. 1.
    Y. Fu, X. Wu, E.H. Han, W. Ke, K. Yang, and Z. Jiang, Effects of Nitrogen on the Passivation of Nickel-Free High Nitrogen and Manganese Stainless Steels in Acidic Chloride Solutions, Electrochim. Acta, 2009, 54, p 4005–4014.  https://doi.org/10.1016/j.electacta.2009.02.024 CrossRefGoogle Scholar
  2. 2.
    H. Baba, T. Kodama, and Y. Katada, Role of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steels, Corros. Sci., 2002, 44, p 2393–2407.  https://doi.org/10.1016/S0010-938X(02)00040-9 CrossRefGoogle Scholar
  3. 3.
    M. Pozuelo, J.E. Wittig, J.A. Jiménez, and G. Frommeyer, Enhanced Mechanical Properties of a Novel High-Nitrogen Cr-Mn-Ni-Si Austenitic Stainless Steel via TWIP/TRIP Effects, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, 40, p 1826–1834.  https://doi.org/10.1007/s11661-009-9863-8 CrossRefGoogle Scholar
  4. 4.
    H. Li, Z. Jiang, Z. Zhang, and Y. Yang, Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel, J. Iron. Steel Res. Int., 2009, 16, p 58–61.  https://doi.org/10.1016/S1006-706X(09)60011-X CrossRefGoogle Scholar
  5. 5.
    S. Fréchard, A. Redjaïmia, E. Lach, and A. Lichtenberger, Mechanical Behaviour of Nitrogen-Alloyed Austenitic Stainless Steel Hardened by Warm Rolling, Mater. Sci. Eng. A, 2006, 415, p 219–224.  https://doi.org/10.1016/j.msea.2005.09.070 CrossRefGoogle Scholar
  6. 6.
    A. Di Schino and J.M. Kenny, Grain Refinement Strengthening of a Micro-Crystalline High Nitrogen Austenitic Stainless Steel, Mater. Lett., 2003, 57, p 1830–1834.  https://doi.org/10.1016/S0167-577X(02)01076-5 CrossRefGoogle Scholar
  7. 7.
    D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420, p 473–478.  https://doi.org/10.1016/j.jnucmat.2011.11.001 CrossRefGoogle Scholar
  8. 8.
    G.K.S.R.E. Williamson, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1, p 34–46.  https://doi.org/10.1080/14786435608238074 CrossRefGoogle Scholar
  9. 9.
    R.K. Ham, The Determination of Dislocation Densities in Thin Films, Philos. Mag., 1961, 6, p 1183–1184CrossRefGoogle Scholar
  10. 10.
    Y. Miyajima, M. Mitsuhara, S. Hata, H. Nakashima, and N. Tsuji, Quantification of Internal Dislocation Density Using Scanning Transmission Electron Microscopy in Ultrafine Grained Pure Aluminium Fabricated by Severe Plastic Deformation, Mater. Sci. Eng. A, 2010, 528, p 776–779.  https://doi.org/10.1016/j.msea.2010.09.058 CrossRefGoogle Scholar
  11. 11.
    T.G. Sousa, S.B. Diniz, A.L. Pinto, and L.P. Brandao, Dislocation Density by X-ray Diffraction in α Brass Deformed by Rolling and ECAE, Mater. Res., 2015, 18, p 246–249.  https://doi.org/10.1590/1516-1439.369214 CrossRefGoogle Scholar
  12. 12.
    G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p 2759–2763.  https://doi.org/10.1016/j.msea.2010.01.033 CrossRefGoogle Scholar
  13. 13.
    S.C. Krishna, G.S. Rao, A.K. Jha, B. Pant, and P.V. Venkitakrishnan, Strengthening in High Strength Cu-Cr-Zr-Ti Alloy Plates Produced by Hot Rolling, Mater. Sci. Eng. A, 2016, 674, p 164–170CrossRefGoogle Scholar
  14. 14.
    Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, and R. Kaibyshev, Structural Strengthening of an Austenitic Stainless Steel Subjected to Warm-to-Hot Working, Mater. Charact., 2011, 62, p 432–437.  https://doi.org/10.1016/j.matchar.2011.02.005 CrossRefGoogle Scholar
  15. 15.
    F. Yin, T. Hanamura, O. Umezawa, and K. Nagai, Phosphorus-Induced Dislocation Structure Variation in the Warm-Rolled Ultrafine-Grained Low-Carbon Steels, Mater. Sci. Eng. A, 2003, 354, p 31–39.  https://doi.org/10.1016/S0921-5093(02)00766-9 CrossRefGoogle Scholar
  16. 16.
    C.M. Sellars, Modelling Microstructural Development During Hot Rolling, Mater. Sci. Technol., 1990, 6, p 1072–1081.  https://doi.org/10.1179/026708390790189966 CrossRefGoogle Scholar
  17. 17.
    C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met Sci, 1978, 13, p 187–194.  https://doi.org/10.1179/msc.1979.13.3-4.187 CrossRefGoogle Scholar
  18. 18.
    M. Jafari and A. Najafizadeh, Correlation Between Zener-Hollomon Parameter And Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng. A, 2009, 501, p 16–25.  https://doi.org/10.1016/j.msea.2008.09.073 CrossRefGoogle Scholar
  19. 19.
    S. Cho and Y. Yoo, Hot rolling simulations of austenitic stainless steel, J. Mater. Sci., 2001, 36, p 4267–4272CrossRefGoogle Scholar
  20. 20.
    Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv, and D. Zhao, Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel During Hot Deformation, Metall. Mater. Trans. A, 2010, 41, p 1025–1032.  https://doi.org/10.1007/s11661-009-0153-2 CrossRefGoogle Scholar
  21. 21.
    S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, and P.V. Venkitakrishnan, On the Direct Aging of Iron Based Superalloy Hot Rolled Plates, Mater. Sci. Eng. A, 2015, 648, p 274–279.  https://doi.org/10.1016/j.msea.2015.09.073 CrossRefGoogle Scholar
  22. 22.
    K. Nakashima, M. Suzuki, Y. Futamura, T. Tsuchiyama, and S. Takaki, Limit of Dislocation Density and Dislocation Strengthening in Iron, Mater. Sci. Forum, 2006, 503–504, p 627–632.  https://doi.org/10.4028/www.scientific.net/MSF.503-504.627 CrossRefGoogle Scholar
  23. 23.
    Y. Murata, S. Ohashi, and Y. Uematsu, Recent Trends in the Production and Use of High Strength Stainless Steels, ISIJ Int., 1993, 33, p 711–720CrossRefGoogle Scholar
  24. 24.
    G. Balachandran, M.L. Bhatia, N.B. Ballal, and P.K. Rao, Processing Nickel Free High Nitrogen Austenitic Stainless Steels Through Conventional Electroslag Remelting Process, ISIJ Int., 2000, 40, p 478–483.  https://doi.org/10.2355/isijinternational.40.478 CrossRefGoogle Scholar
  25. 25.
    V.G. Gavriljuk, Nitrogen in Iron and Steel, ISIJ Int., 1996, 36, p 738–745.  https://doi.org/10.2355/isijinternational.36.738 CrossRefGoogle Scholar
  26. 26.
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65, p 39–104.  https://doi.org/10.1016/j.mser.2009.03.001 CrossRefGoogle Scholar
  27. 27.
    H. Sieurin, J. Zander, and R. Sandström, Modelling Solid Solution Hardening in Stainless Steels, Mater. Sci. Eng. A, 2006, 415, p 66–71.  https://doi.org/10.1016/j.msea.2005.09.031 CrossRefGoogle Scholar
  28. 28.
    G. Balachandran, M.L. Bhatia, N.B. Ballal, and P.K. Rao, Some Theoretical Aspects on Designing Nickel Free High Nitrogen Austenitic Stainless Steels, ISIJ Int., 2001, 41, p 1018–1027.  https://doi.org/10.2355/isijinternational.41.1018 CrossRefGoogle Scholar
  29. 29.
    J. Eliasson and R. Sandström, Proof Strength Values for Austenitic Stainless Steels at Elevated Temperatures, Steel Res. Int., 2000, 71, p 249–254CrossRefGoogle Scholar
  30. 30.
    L. Vitos, P.A. Korzhavyi, and B. Johansson, Elastic Property Maps of Austenitic Stainless Steels, Phys. Rev. Lett., 2002, 88, p 155501CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • S. Chenna Krishna
    • 1
  • N. K. Karthick
    • 1
  • Abhay K. Jha
    • 1
  • Bhanu Pant
    • 1
  • Roy M. Cherian
    • 1
  1. 1.Materials and Mechanical EntityTrivandrumIndia

Personalised recommendations