Advertisement

Electrochemical Behavior of Sn-9Zn-xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

  • Zhenghong Wang
  • Chuantong Chen
  • Jinting Jiu
  • Shijo Nagao
  • Masaya Nogi
  • Hirotaka Koga
  • Hao Zhang
  • Gong Zhang
  • Katsuaki Suganuma
Article
  • 103 Downloads

Abstract

Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn-xTi (x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density (icorr) and much higher total resistance (Rt). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn-xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

Keywords

corrosion EIS IMCs lead-free solder Sn-9Zn-xTi 

Notes

Acknowledgments

The present research was partially supported by Japan Science and Technology Agency (JST) Advanced Low Carbon Technology Research and Development Program (ALCA) project (Grant No. J165101047). ZhengHong Wang would like to express gratitude to the support from the Chinese Scholars Council (File No. 201606210397).

References

  1. 1.
    J.W. Morris, J.L.F. Goldstein, and Z. Mei, Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders, JOM, 1993, 45, p 25-27CrossRefGoogle Scholar
  2. 2.
    W.-T. Chen, C. Ho, and C. Kao, Effect of Cu Concentration on the Interfacial Reactions Between Ni and Sn-Cu Solders, J. Mater. Res., 2002, 17, p 263-266CrossRefGoogle Scholar
  3. 3.
    K.S. Kim, S.H. Huh, and K. Suganuma, Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints, J. Alloy. Compd., 2003, 352, p 226-236CrossRefGoogle Scholar
  4. 4.
    D. Soares, J. Barbosa, and C. Vilarinho, Interactions of Cu Substrates with Titanium-Alloyed Sn-Zn Solders, J. Min. Metall., 2006, 42, p 45-56CrossRefGoogle Scholar
  5. 5.
    X. Chen, A. Hu, M. Li, and D. Mao, Study on the Properties of Sn-9Zn-xCr Lead-Free Solder, J. Alloy. Compd., 2008, 460, p 478-484CrossRefGoogle Scholar
  6. 6.
    L.R. Garcia, W.R. Osório, L.C. Peixoto, and A. Garcia, Mechanical Properties of Sn-Zn Lead-Free Solder Alloys Based on the Microstructure Array, Mater. Charact., 2010, 61, p 212-220CrossRefGoogle Scholar
  7. 7.
    I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn Alloy/Cu Joints, Mater. Trans., 2002, 43, p 1797-1801CrossRefGoogle Scholar
  8. 8.
    K. Suganuma and K.-S. Kim, Sn-Zn Low Temperature Solder, J. Mater. Sci.: Mater. Electron., 2007, 18, p 121-127Google Scholar
  9. 9.
    D. Li, P.P. Conway, and C. Liu, Corrosion Characterization of Tin-Lead and Lead Free Solders in 3.5 wt.% NaCl Solution, Corros. Sci., 2008, 50, p 995-1004CrossRefGoogle Scholar
  10. 10.
    K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, Wetting and Interface Microstructure Between Sn-Zn Binary Alloys and Cu, J. Mater. Res., 1998, 13, p 2859-2865CrossRefGoogle Scholar
  11. 11.
    J.-E. Lee, K.-S. Kim, K. Suganuma, M. Inoue, and G. Izuta, Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder, Mater. Trans., 2007, 48, p 584-593CrossRefGoogle Scholar
  12. 12.
    J.-E. Lee, K.-S. Kim, M. Inoue, J. Jiang, and K. Suganuma, Effects of Ag and Cu Addition on Microstructural Properties and Oxidation Resistance of Sn-Zn Eutectic Alloy, J. Alloy. Compd., 2008, 454, p 310-320CrossRefGoogle Scholar
  13. 13.
    J.-C. Liu, S. Park, S. Nagao, M. Nogi, H. Koga, J.-S. Ma, G. Zhang, and K. Suganuma, The Role of Zn Precipitates and Cl − Anions in Pitting Corrosion of Sn-Zn Solder Alloys, Corros. Sci., 2015, 92, p 263-271CrossRefGoogle Scholar
  14. 14.
    X. Chen, M. Li, X. Ren, D. Mao, Effects of Alloying Elements on the Characteristics of Sn-Zn Lead-Free Solder, in: 2005 6th International Conference on Electronic Packaging Technology, IEEE, 2005, pp. 211-217.Google Scholar
  15. 15.
    X. Chen, M. Li, X.X. Ren, A.M. Hu, and D.L. Mao, Effect of Small Additions of Alloying Elements on the Properties of Sn-Zn Eutectic Alloy, J. Electron. Mater., 2006, 35, p 1734-1739CrossRefGoogle Scholar
  16. 16.
    J.-C. Liu, G. Zhang, J.-S. Ma, and K. Suganuma, Ti Addition to Enhance Corrosion Resistance of Sn-Zn Solder Alloy by Tailoring Microstructure, J. Alloy. Compd., 2015, 644, p 113-118CrossRefGoogle Scholar
  17. 17.
    J. Hu, T. Luo, A. Hu, M. Li, and D. Mao, Electrochemical Corrosion Behaviors of Sn-9Zn-3Bi-xCr Solder in 3.5% NaCl Solution, J. Electron. Mater., 2011, 40, p 1556-1562CrossRefGoogle Scholar
  18. 18.
    G. Vassilev, Diffusion Couple Studies of the Ti-Bi-Zn System, Cryst. Res. Technol., 2004, 39, p 763-770CrossRefGoogle Scholar
  19. 19.
    G. Vassilev, X. Liu, and K. Ishida, Reaction Kinetics and Phase Diagram Studies in the Ti-Zn System, J. Alloy. Compd., 2004, 375, p 162-170CrossRefGoogle Scholar
  20. 20.
    G.P. Vassilev, Phase Diagram Studies of the Ti-Bi-Sn System at 400 °C, J. Alloy. Compd., 2004, 365, p 164-167CrossRefGoogle Scholar
  21. 21.
    G.P. Vassilev and K. Ishida, Phase Diagram Studies of the Ti-Bi-Zn System, J. Alloy. Compd., 2004, 385, p 181-191CrossRefGoogle Scholar
  22. 22.
    G.P. Vassilev, X.J. Liu, and K. Ishida, Reaction Kinetics and Phase Diagram Studies in the Ti-Zn System, J. Alloy. Compd., 2004, 375, p 162-170CrossRefGoogle Scholar
  23. 23.
    G.P. Vassilev, E.S. Dobrev, and J.-C. Tedenac, Phase Diagram of the Sn-Zn-Ti System, J. Alloy. Compd., 2006, 407, p 170-175CrossRefGoogle Scholar
  24. 24.
    M.G. Cho, H.Y. Kim, S.-K. Seo, and H.M. Lee, Enhancement of Heterogeneous Nucleation of β-Sn Phases in Sn-rich Solders by Adding Minor Alloying Elements with Hexagonal Closed Packed Structures, Appl. Phys. Lett., 2009, 95, p 021905CrossRefGoogle Scholar
  25. 25.
    M.F. Mohd Nazeri and A.A. Mohamad, Corrosion Resistance of Ternary Sn-9Zn-xIn Solder Joint in Alkaline Solution, J. Alloy. Compd., 2016, 661, p 516-525CrossRefGoogle Scholar
  26. 26.
    S.C. Chung, J.R. Cheng, S.D. Chiou, and H.C. Shih, EIS Behavior of Anodized zinc in Chloride Environments, Corros. Sci., 2000, 42, p 1249-1268CrossRefGoogle Scholar
  27. 27.
    M. Mouanga, P. Berçot, and J.Y. Rauch, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization, Corros. Sci., 2010, 52, p 3984-3992CrossRefGoogle Scholar
  28. 28.
    G. Brug, A. Van Den Eeden, M. Sluyters-Rehbach, and J. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176, p 275-295CrossRefGoogle Scholar
  29. 29.
    F.E.-T. Heakal, A.M. Fekry, and A.A. Ghoneim, Corrosion Characterization of New Tin-Silver Binary Alloys in Nitric Acid Solutions, Corros. Sci., 2008, 50, p 1618-1626CrossRefGoogle Scholar
  30. 30.
    J.C. Liu, G. Zhang, Z.H. Wang, J.Y. Xie, J.S. Ma, K. Suganuma, Electrochemical behavior of Sn-xZn lead-free solders in aerated NaCl solution, in: 2015 16th International Conference on Electronic Packaging Technology (ICEPT), 2015, pp. 68-73.Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Zhenghong Wang
    • 1
    • 2
  • Chuantong Chen
    • 2
  • Jinting Jiu
    • 2
    • 3
  • Shijo Nagao
    • 2
  • Masaya Nogi
    • 2
  • Hirotaka Koga
    • 2
  • Hao Zhang
    • 2
  • Gong Zhang
    • 1
  • Katsuaki Suganuma
    • 2
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan
  3. 3.Senju Metal Industry Co., LtdTokyoJapan

Personalised recommendations