Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1908–1916 | Cite as

Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM

Article
  • 62 Downloads

Abstract

Wire electrical discharge machining is an unconventional machining technology that applies physical principles to material removal. The material is removed by a series of recurring current discharges between the workpiece and the tool electrode, and a ‘kerf’ is created between the wire and the material being machined. The width of the kerf is directly dependent not only on the diameter of the wire used, but also on the machine parameter settings and, in particular, on the set of mechanical and physical properties of the material being machined. To ensure precise machining, it is important to have the width of the kerf as small as possible. The present study deals with the evaluation of the width of the kerf for four different metallic materials (some of which were subsequently heat treated using several methods) with different machine parameter settings. The kerf is investigated on metallographic cross sections using light and electron microscopy.

Keywords

aluminum 99.5 electrical discharge machining steel 16MnCr5 steel X210Cr12 surface layer titanium alloy Ti6-Al-4V WEDM width of kerf 

Notes

Acknowledgments

This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the Project CEITEC 2020 (LQ1601). This part of work was carried out with the support of core facilities of CEITEC—Central European Institute of Technology under CEITEC—open access project, ID Number LM2011020, funded by Ministry of Education, Youth and Sports of the Czech Republic under the activity projects of major infrastructures for research, development, and innovations.

References

  1. 1.
    K.H. Ho, S.T. Newman, S. Rahimifard, and R.D. Allen, State of the Art in Wire Electrical Discharge Machining (WEDM), Int. J. Mach. Tools Manuf., 2004, 44, p 1247–1259CrossRefGoogle Scholar
  2. 2.
    K.H. Ho and S.T. Newman, State of the Art Electrical Discharge Machining (EDM), Int. J. Mach. Tools Manuf., 2003, 43, p 1287–1300CrossRefGoogle Scholar
  3. 3.
    E.C. Jameson, Electrical Discharge Machining, 2001, ISBN 08-726-3521-X.Google Scholar
  4. 4.
    A. Werner, Method for Enhanced Accuracy in Machining Curvilinear Profiles on Wire-Cut Electrical Discharge Machines, Precision Eng., 2016, 44, p 75–80CrossRefGoogle Scholar
  5. 5.
    K. Mouralova, R. Matousek, J. Kovar, J. Mach, L. Klakurkova, and J. Bednar, Analyzing the Surface Layer After WEDM Depending on the Parameters of a Machine for the 16MnCr5 Steel, Measurement, 2016, 94, p 771–779CrossRefGoogle Scholar
  6. 6.
    K. Mouralova, J. Kovar, and P. Houska, Experimental Evaluation of WEDM Machined Surface Waviness, Acta Polytechnica, 2016, 56, p 360–366CrossRefGoogle Scholar
  7. 7.
    K. Mouralova, R. Zahradnicek, and P. Houska, Evaluation of Surface Quality of X210CR12 Steel for Forming Tools Machined by WEDM, MM Sci. J., 2016, 2016, p 1366–1369CrossRefGoogle Scholar
  8. 8.
    K. Mouralova, J. Kovar, L. Klakurkova, T. Prokes, and M. Horynova, Comparison of Morphology and Topography of Surfaces of WEDM Machined Structural Materials, Measurement, 2017, 104, p 12–20CrossRefGoogle Scholar
  9. 9.
    K. Mouralova, J. Kovar, L. Klakurkova, J. Bednar, L. Benes, and R. Zahradnicek, Analysis of Surface Morphology and Topography of Pure Aluminium Machined Using WEDM, Measurement, 2018, 114, p 169–176CrossRefGoogle Scholar
  10. 10.
    V. Parashar, A. Rehman, J.L. Bhagoria, and Y.M. Puri, Kerfs Width Analysis for Wire Cut Electro Discharge Machining of SS 304L Using Design of Experiments, Indian J. Sci. Technol., 2010, 3, p 369–373Google Scholar
  11. 11.
    P. Gupta, R. Khanna, R.D. Gupta, and N. Sharma, Effect of Process Parameters on Kerf Width in WEDM for HSLA Using Response Surface Methodology, J. Eng. Technol., 2012, 2, p 1CrossRefGoogle Scholar
  12. 12.
    S. Di, X. Chu, D. Wei, Z. Wang, G. Chi, and Y. Liu, Analysis of Kerf Width in Micro-WEDM, Int. J. Mach. Tools Manuf., 2009, 49, p 788–792CrossRefGoogle Scholar
  13. 13.
    N. Tosun, C. Cogun, and G. Tosun, A study on Kerf and Material Removal Rate in Wire Electrical Discharge Machining Based on Taguchi Method, J. Mater. Proc. Technol., 2004, 152, p 316–322CrossRefGoogle Scholar
  14. 14.
    S.S. Mahapatra and A. Patnaik, Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Taguchi Method, Int. J. Adv. Manuf. Technol., 2007, 34, p 911–925CrossRefGoogle Scholar
  15. 15.
    K. Mouralova, Modernítechnologiedrátovéhoelektroerozivníhořezáníkovovýchslitin, Thesis. CERM, Brno, 2015, ISBN 80-214-2131-2.Google Scholar
  16. 16.
    J.A. McGeough, Advanced Methods of Machining, Springer, Berlin, 1988Google Scholar
  17. 17.
    W.J. Hsue, Y.S. Liao, and S.S. Lu, Fundamental Geometry Analysis of Wire Electrical Discharge Machining in Corner Cutting, Int. J. Mach. Tools Manuf., 1999, 39, p 651–667CrossRefGoogle Scholar
  18. 18.
    K. Mouralova, J. Kovar, T. Prokes, J. Bednar, R. Matousek, and L. Klakurkova, Mendel J. Ser., 2016, 22, p 301–304.Google Scholar
  19. 19.
    D.K. Aspinwall, S.L. Soo, A.E. Berrisford, and G. Walder, Workpiece Surface Roughness and Integrity After WEDM of Ti–6Al–4V and Inconel 718 Using Minimum Damage Generator Technology, CIRP Ann. Manuf. Technol., 2008, 57, p 187–190CrossRefGoogle Scholar
  20. 20.
    F. Klocke, D. Welling, and J. Dieckmann, Comparison of Grinding and Wire EDM Concerning Fatigue Strength and Surface Integrity of Machined Ti6Al4V Component, Procedia Eng., 2011, 19, p 184–189CrossRefGoogle Scholar
  21. 21.
    M.T. Antar, S.L. Soo, D.K. Aspinwall, D. Jones, and R. Perez, Productivity and Workpiece Surface Integrity When WEDM Aerospace Alloys Using Coated Wires, Procedia Eng., 2011, 19, p 3–8CrossRefGoogle Scholar
  22. 22.
    A. Hasçalýk and U. Çaydaş, Experimental Study of Wire Electrical Discharge Machining of AISI, D5 Tool Steel, J. Mater. Proc. Technol., 2004, 148, p 362–367CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • K. Mouralova
    • 1
  • J. Kovar
    • 1
  • L. Klakurkova
    • 2
  • T. Prokes
    • 1
  1. 1.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.CEITEC - Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations