Journal of Materials Engineering and Performance

, Volume 27, Issue 2, pp 457–470 | Cite as

Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

  • B. Tlili
  • C. Nouveau
  • G. Guillemot
  • A. Besnard
  • A. Barkaoui
Article
  • 100 Downloads

Abstract

The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

Keywords

friction hardness PVD coatings residual stresses structure wear 

Notes

Acknowledgments

The authors would like to thank Mr. Romain Fliti, Mr. Denis Lagadrillère for experimental support, Pr. Alain Iost and Pr. Luc Imhoff for helpful discussions and collaboration during this work.

References

  1. 1.
    A. Pilkington, S.J. Dowey, J.T. Toton, and E.D. Doyle, Machining with AlCr-Oxinitride Coated Cutting Tools, Tribol. Int., 2013, 65, p 303–313CrossRefGoogle Scholar
  2. 2.
    J. Heinrichs, J. Gerth, T. Thersleff, U. Bexell, M. Larsson, and U. Wiklund, Influence of Sliding Speed on Modes of Material Transfer as Steel Slides Against PVD Tool Coatings, Tribol. Int., 2013, 58, p 55–64CrossRefGoogle Scholar
  3. 3.
    S. PalDey and S.C. Deevi, Single Layer and Multilayer Wear Resistant Coatings of (Ti, Al) N: A Review, Mater. Sci. Eng. A, 2003, 342(1), p 58–79CrossRefGoogle Scholar
  4. 4.
    Z. Li, P. Munroe, Z. Jiang, X. Zhao, J. Xu, Z. Zhou, J. Jiang, F. Fang, and Z. Xie, Designing Superhard, Self-Toughening CrAlN Coatings Through Grain Boundary Engineering, Acta Mater., 2012, 60(16), p 5735–5744CrossRefGoogle Scholar
  5. 5.
    M. Cekada, P. Panjan, M. Macek, and P. Amid, Comparison of Structural and Chemical Properties of Cr-Based Hard Coatings, Surf. Coat. Technol., 2002, 151–152, p 31–35CrossRefGoogle Scholar
  6. 6.
    G.S. Kim and S.Y. Lee, Microstructure and Mechanical Properties of AlCrN Films Deposited by CFUBMS, Surf. Coat. Technol., 2006, 201, p 4361–4366CrossRefGoogle Scholar
  7. 7.
    I.M. Penttinen, A.S. Korhonen, E. Harju, M.A. Turkia, O. Forsen, and O. Ristolainen, Comparison of the Corrosion Resistance of TiN and (Ti, Al)N Coatings, Surf. Coat. Technol., 1992, 50, p 161–168CrossRefGoogle Scholar
  8. 8.
    M. Vanstappen, B. Malliet, L. De Schepper, L.M. Stals, J.P. Celis, and J.R. Roos, Influence of Ti Intermediate Layer on Properties of Tin Coatings Deposited on Various Substrates, Surf. Eng., 1989, 5(4), p 305–310CrossRefGoogle Scholar
  9. 9.
    G.A. Fontalvo, R. Daniel, and C. Mitterer, Interlayer Thickness Influence on the Tribological Response of bi-Layer Coatings, Tribol. Int., 2010, 43, p 108–112CrossRefGoogle Scholar
  10. 10.
    C.A. Dobrzanski, M. Polok, P. Panjan, S. Bugliosi, and M. Adaniak, Improvement of Wear Resistance of Hot Work Steels by PVD Coatings Deposition, J. Mater. Process. Technol., 2004, 155–156, p 1995–2001CrossRefGoogle Scholar
  11. 11.
    Y. Birol, Sliding Wear of CrN, AlCrN and AlTiN Coated AISI, H13 Hot Work Tool Steels in Aluminum Extrusion, Tribol. Int., 2013, 57, p 101–106CrossRefGoogle Scholar
  12. 12.
    M. Okumiya and M. Griepentrog, Mechanical Properties and Tribological Behavior of TiN/CrAlN and CrN/CrAlN Multilayer Coatings, Surf. Coat. Technol., 1999, 112, p 123–128CrossRefGoogle Scholar
  13. 13.
    B. Warcholinski, A. Gilewicz, and J. Ratajski, Cr2N/CrN Multilayer Coatings for Wood Machining Tools, Tribol. Int., 2011, 44, p 1076–1082CrossRefGoogle Scholar
  14. 14.
    Y. Birol, High-Temperature Abrasive Wear Testing of Potential Tool Materials for Thixoforming of Steels, Tribol. Int., 2010, 43, p 2222–2230CrossRefGoogle Scholar
  15. 15.
    M. Kawate, A.K. Hashimoto, and T. Suzuki, Oxidation Resistance of Cr1-xAlxN and Ti1-xAlxN Films, Surf. Coat. Technol., 2003, 165, p 163–167CrossRefGoogle Scholar
  16. 16.
    Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation Resistance of TiN, CrN, TiAlN and CrAlN Coatings Deposited by Lateral Rotating Cathode Arc, Thin Solid Films, 2009, 517, p 4845–4849CrossRefGoogle Scholar
  17. 17.
    M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, and T. Aizawa, Friction and Wear Properties of CrAlN and CrVN Films Deposited by Cathodic Arc Ion Plating Method, Surf. Coat. Technol., 2004, 177–178, p 627–630CrossRefGoogle Scholar
  18. 18.
    O. Knotek, F. Loffler, and H.-J. Scholl, Properties of Arc-Evaporated CrN and (Cr, Al)N Coatings, Surf. Coat. Technol., 1991, 45, p 53–58CrossRefGoogle Scholar
  19. 19.
    M.-A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, and G. Nouet, Stress Profiles and Thermal Stability of CrxNy Films Deposited by Magnetron Sputtering, Surf. Coat. Technol., 2002, 151–152, p 510–514CrossRefGoogle Scholar
  20. 20.
    J.L. Mo and M.H. Zhu, Tribological Oxidation Behaviour of PVD Hard Coatings, Tribol. Int., 2009, 42, p 1758–1764CrossRefGoogle Scholar
  21. 21.
    A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, and B. Sartory, Investigation of the Properties of Al1−xCrxN Coatings Prepared by Cathodic Arc Evaporation, Surf. Coat. Technol., 2005, 200, p 2114–2122CrossRefGoogle Scholar
  22. 22.
    J. Sun, C. Sun, and Y. Wang, Effect of Cr Content on the Electrochemical Behavior of Low Chromium X65 Steel in CO2 Environment, Int. J. Electrochem. Sci., 2016, 11, p 8599–8611CrossRefGoogle Scholar
  23. 23.
    A. Ben Cheikh Larbi and B. Tlili, Fretting Wear of Multilayered PVD TiAlCN/TiAlN/TiAl on AISI, 4140 Steel, Surf. Coat. Technol., 2006, 201, p 1511–1518CrossRefGoogle Scholar
  24. 24.
    T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion, J. Therm. Spray Technol., 1996, 5, p 401–418CrossRefGoogle Scholar
  25. 25.
    M. Ahlgren and H. Blomqvist, Influence of Bias Variation on Residual Stress and Texture in TiAlN PVD Coatings, Surf. Coat. Technol., 2005, 200, p 157–160CrossRefGoogle Scholar
  26. 26.
    G.D. Quinn, P.L. Patel, and I. Lloyd, Effect of Loading Rate Upon Conventional Ceramic Microindentation Hardness, J. Res. Nat. Inst. Stand. Technol., 2002, 107, p 299–306CrossRefGoogle Scholar
  27. 27.
    K. Rahmoun, A. Iost, V. Keryvin, G. Guillemot, and N.E. Chabane Sari, A Multilayer Model for Describing Hardness Variations of Aged Porous Silicon Low-Dielectric-Constant Thin Films, Thin Solid Films, 2009, 518, p 213–221CrossRefGoogle Scholar
  28. 28.
    T. Ghrib, B. Tlili, C. Nouveau, Y. Benlatreche, M. Lambertin, N. Yacoubi, and M. Ennasri, Experimental Investigation of the Mechanical Micro Structural and Thermal Properties of Thin CrAIN Layers Deposited by PVD Technique for Various Aluminum Percentages, Phys. Proc., 2009, 2, p 1327–1336CrossRefGoogle Scholar
  29. 29.
    F. Vaz, L. Rebouta, Ph. Goudeau, J.P. Rivière, E. Schäffer, G. Kleer, and M. Bodmann, Residual Stress States in Sputtered Ti1−xSixNy Films, Thin Solid Films, 2002, 402, p 195–202CrossRefGoogle Scholar
  30. 30.
    G. Dehm, D. Weiss, and E. Arzt, In Situ Transmission Electron Microscopy Study of Thermal-Stress Induced Dislocations in a Thin Cu Film Constrained by a Si Substrate, Mat. Sci. Eng., 2001, A309–310, p 468–472CrossRefGoogle Scholar
  31. 31.
    B. Tlili, N. Mustapha, C. Nouveau, Y. Benlatreche, G. Guillemot, and M. Lambertin, Correlation Between Thermal Properties and Aluminum Fractions in CrAlN Layers Deposited by PVD Technique, Vacuum, 2010, 84, p 1067–1074CrossRefGoogle Scholar
  32. 32.
    C. Nouveau, B. Tlili, H. Aknouche, Y. Benlatreche, and B. Patel, Comparison of CrAlN Layers Obtained with One (CrAl) or Two Targets (Cr and Al) by Magnetron Sputtering, Thin Solid Films, 2012, 520, p 2932–2937CrossRefGoogle Scholar
  33. 33.
    G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. Lond. A, 1909, 82, p 172–175CrossRefGoogle Scholar
  34. 34.
    A. Mézin, Coating Internal Stress Measurement Through the Curvature Method: A Geometry-Based Criterion Delimiting the Relevance of Stoney’s Formula, Surf. Coat. Technol., 2006, 200, p 5259–5267CrossRefGoogle Scholar
  35. 35.
    K.H. Raveesha, K. Kumar, and B.K. Prasad, On Alternative Methods of Determining Radius of Curvature Using Newton’s Rings Set Up, Int. Lett. Chem. Phys. Astron., 2015, 48, p 27–31CrossRefGoogle Scholar
  36. 36.
    W.J. Meng, J.A. Sell, T.A. Perry, L.E. Rehn, and P.M. Baldo, Growth of Aluminum Nitride Thin Films on Si (111) and Si (001): Structural Characteristics and Development of Intrinsic Stresses, J. Appl. Phys., 1994, 75, p 3446–3455CrossRefGoogle Scholar
  37. 37.
    D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Compressive-Stress-Induced Formation of Thin-Film Tetrahedral Amorphous Carbon, Phys. Rev. Lett., 1991, 67, p 773CrossRefGoogle Scholar
  38. 38.
    C. Quaeyhaegens, G. Knyt, J. D’Haen, and L.M. Stals, Experimental Study of the Growth Evolution from Random Towards a (111) Preferential Orientation of PVD TiN Coatings, Thin Solid Films, 1995, 258, p 170–173CrossRefGoogle Scholar
  39. 39.
    W.J. Meng, J.A. Sell, and T.A. Perry, Measurement of Intrinsic Stresses During Growth of Aluminum Nitride Thin Films by Reactive Sputter Deposition, J. Appl. Phys., 1993, 74(4), p 2411–2414CrossRefGoogle Scholar
  40. 40.
    C. Nouveau. Etude de revêtements durs (CrxNy) obtenus par méthodes PVD: réalisation et caractérisations, applications à l’usinage du bois. Thèse de doctorat n°21-2001, CER ENSAM Cluny, FranceGoogle Scholar
  41. 41.
    L. Chekour, C. Nouveau, A. Chala, C. Labidi, N. Rouag, and M.A. Djouadi, Growth Mechanism for Chromium Nitride Films Deposited by Magnetron and Triode Sputtering Methods, Surf. Coat. Technol., 2005, 200, p 241–244CrossRefGoogle Scholar
  42. 42.
    H. Holleck and H. Schulz, Preparation and Behaviour of Wear-Resistant TiC/TiB2, TiN/TiB2 and TiC/TiN Coatings with High Amounts of Phase Boundaries, Surf. Coat. Technol., 1988, 36, p 707–714CrossRefGoogle Scholar
  43. 43.
    P. Panjan, B. Navinsek, A. Cvelbar, and I. Milosev, Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN Multilayer Hard Coatings Reactively Sputtered at Low Temperature, Thin Solid Films, 1996, 282, p 298–301CrossRefGoogle Scholar
  44. 44.
    A. Gilewicz and B. Warcholinski, Tribological Properties of CrCN/CrN Multilayer Coatings, Tribol. Int., 2014, 80, p 34–40CrossRefGoogle Scholar
  45. 45.
    Q. Wang, F. Zhoub, and J. Yana, Evaluating Mechanical Properties and Crack Resistance of CrN, CrTiN, CrAlN and CrTiAlN Coatings by Nanoindentation and Scratch Tests, Surf. Coat. Technol., 2016, 285, p 203–213CrossRefGoogle Scholar
  46. 46.
    Y.X. Wang, S. Zhang, J.-W. Lee, W.S. Lew, and B. Li, Influence of Bias Voltage on the Hardness and Toughness of CrAlN Coatings via Magnetron Sputtering, Surf. Coat. Technol., 2012, 206, p 5103–5107CrossRefGoogle Scholar
  47. 47.
    I. Rahil, Élaboration et caractérisation de revêtements à base de nitrure de Chrome, carbonitrure et carbure de Titane élaborés par pulvérisation magnétron. Thèse de doctorat n°432-2013, CER ENSAM Cluny, FranceGoogle Scholar
  48. 48.
    Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation Resistance of TiN, CrN, TiAlN and CrAlN Coatings Deposited by Lateral Rotating Cathode Arc, Thin Solid Films, 2009, 517, p 4845–4849CrossRefGoogle Scholar
  49. 49.
    J. Musil and H. Hrubý, Superhard Nanocomposite Ti1−xAlxN Films Prepared by Magnetron Sputtering, Thin Solid Films, 2000, 365, p 104–109CrossRefGoogle Scholar
  50. 50.
    A.G. Evans, J.W. Hutchinson, and Y. Wei, Interface Adhesion: Effects of Plasticity and Segregation, Acta Mater., 1999, 47, p 4093–4113CrossRefGoogle Scholar
  51. 51.
    E. de Wit, B. Blanpain, L. Froyen, and J.-P. Celis, The Tribochemical Behaviour of TiN-Coatings During Fretting Wear, Wear, 1998, 217, p 215–224CrossRefGoogle Scholar
  52. 52.
    B. Alemón, M. Flores, W. Ramírez, J.C. Huegel, and E. Broitman, Tribocorrosion Behavior and Ions Release of CoCrMo Alloy Coated with a TiAlVCN/CNx Multilayer in Simulated Body Fluid Plus Bovine Serum Albumin, Tribol. Int., 2015, 81, p 159–168CrossRefGoogle Scholar
  53. 53.
    A.A. Voevodin, C. Rebholz, J.M. Schneider, P. Stevenson, and A. Matthews, Wear Resistant Composite Coatings Deposited by Electron Enhanced Closed Field Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 1995, 73, p 185–197CrossRefGoogle Scholar
  54. 54.
    Y. Mu, M. Liu, and Y. Zhao, Carbon Doping to Improve the High Temperature Tribological Properties of VN Coating, Tribol. Int., 2016, 97, p 327–336CrossRefGoogle Scholar
  55. 55.
    H. Hasegawa, M. Kawate, and T. Suzuki, Effects of Al Contents on Microstructures of Cr1−xAlxN and Zr1-xAlxN Films Synthesized by Cathodic Arc Method, Surf. Coat. Technol., 2005, 200, p 2409–2413CrossRefGoogle Scholar
  56. 56.
    S. Tao, Z. Yin, X. Zhou, and C. Ding, Sliding Wear Characteristics of Plasma-Sprayed Al2O3 and Cr2O3 Coatings Against Copper Alloy Under Severe Conditions, Tribol. Int., 2010, 43, p 69–75CrossRefGoogle Scholar
  57. 57.
    J. Nohava, P. Dessarzin, P. Karvankova, and M. Morstein, Characterization of Tribological Behavior and Wear Mechanisms of Novel Oxynitride PVD Coatings Designed for Applications at High Temperatures, Tribol. Int., 2015, 81, p 231–239CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • B. Tlili
    • 1
  • C. Nouveau
    • 2
  • G. Guillemot
    • 3
  • A. Besnard
    • 2
  • A. Barkaoui
    • 1
  1. 1.LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI)Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de TunisTunisTunisia
  2. 2.Arts et Métiers ParisTech - LaBoMaPCampus Arts et Métiers ParisTech de ClunyClunyFrance
  3. 3.CEMEF-Centre de Mise en Forme des Matériaux, CNRS, UMR 7635, CS10207MINES ParisTech, PSL Research UniversitySophia AntipolisFrance

Personalised recommendations