Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles

  • Kazuhiro Tamada
  • Toshifumi Kakiuchi
  • Yoshihiko Uematsu


Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = −1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = −1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = −1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.


crack initiation crystallographic analysis double twin EBSD fatigue magnesium alloy stress ratio 


  1. 1.
    H. Tonda and A. Ando, Effect of Temperature and Shear Direction on Yield Stress by {11-22} 〈-1-123〉 Slip in HCP Metals, Metall. Mater. Trans. A, 2002, 33A, p 831–836CrossRefGoogle Scholar
  2. 2.
    S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg–6% Al–1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263CrossRefGoogle Scholar
  3. 3.
    Y. Chino, K. Kimura, M. Hakamada, and M. Mabuchi, Mechanical Anisotropy Due to Twinning in an Extruded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2008, 486, p 311–317CrossRefGoogle Scholar
  4. 4.
    J. Robson, Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature, Metall. Mater. Trans. A, 2014, 45A, p 5226–5235CrossRefGoogle Scholar
  5. 5.
    S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy, Metall. Mater. Trans. A, 2008, 39A, p 3014–3026CrossRefGoogle Scholar
  6. 6.
    S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Low Cycle Fatigue Properties of an Extruded AZ31 Magnesium Alloy, Int. J. Fatigue, 2009, 31, p 726–735CrossRefGoogle Scholar
  7. 7.
    F. Lv, F. Yang, S.X. Li, and Z.F. Zhang, Effects of Hysteresis Energy and Mean Stress on Low-Cycle Fatigue Behaviors of an Extruded Magnesium Alloy, Scr. Mater., 2011, 65, p 53–56CrossRefGoogle Scholar
  8. 8.
    T. Hama, Y. Kariyazaki, N. Hosokawa, H. Fujimoto, and H. Takuda, Work-Hardening Behaviors of Magnesium Alloy Sheet During In-Plane Cyclic Loading, Mater. Sci. Eng. A, 2012, 551, p 209–217CrossRefGoogle Scholar
  9. 9.
    Y. Xiong, Q. Yu, and Y. Jiang, An Experimental Study of Cyclic Plastic Deformation of Extruded ZK60 Magnesium Alloy Under Uniaxial Loading at Room Temperature, Int. J. Plast., 2014, 53, p 107–124CrossRefGoogle Scholar
  10. 10.
    J.D. Bernard, J.B. Jordon, M.F. Horstemeyer, H. El Kadiri, J. Baird, D. Lamb, and A.A. Luo, Structure–Property Relations of Cyclic Damage in a Wrought Magnesium Alloy, Scr. Mater., 2010, 63, p 751–756CrossRefGoogle Scholar
  11. 11.
    Q. Yu, J. Zhang, and Y. Jiang, Fatigue Damage Development in Pure Polycrystalline Magnesium Under Cyclic Tension–Compression Loading, Mater. Sci. Eng. A, 2011, 528, p 7816–7826CrossRefGoogle Scholar
  12. 12.
    A. King, W. Ludwig, M. Herbig, J.-Y. Buffière, A.A. Khan, N. Stevens, and T.J. Marrow, Three-Dimensional In Situ Observations of Short Fatigue Crack Growth in Magnesium, Acta Mater., 2011, 59, p 6761–6771CrossRefGoogle Scholar
  13. 13.
    D.K. Xu and E.H. Han, Relationship Between Fatigue Crack Initiation and Activated {10-12} Twins in As-Extruded Pure Magnesium, Scr. Mater., 2013, 69, p 702–705CrossRefGoogle Scholar
  14. 14.
    F. Wang, J. Dong, M. Feng, J. Sun, W. Ding, and Y. Jiang, A Study of Fatigue Damage Development in Extruded Mg–Gd–Y Magnesium Alloy, Mater. Sci. Eng. A, 2014, 589, p 209–216CrossRefGoogle Scholar
  15. 15.
    B. Wen, F. Wang, L. Jin, and J. Dong, Fatigue Damage Development in Extruded Mg–3Al–Zn Magnesium Alloy, Mater. Sci. Eng. A, 2016, 667, p 171–178CrossRefGoogle Scholar
  16. 16.
    Y. Uematsu, T. Kakiuchi, K. Tamada, and Y. Kamiya, EBSD Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained AZ31 Magnesium Alloy, Int. J. Fatigue, 2016, 84, p 1–8CrossRefGoogle Scholar
  17. 17.
    S. Mironov, K. Masaki, Y.S. Sato, and H. Kokawa, Relationship Between Material Flow and Abnormal Grain Growth in Friction-Stir Welds, Scr. Mater., 2012, 67, p 983–986CrossRefGoogle Scholar
  18. 18.
    R. Tanegashima, H. Akebono, M. Kato, and A. Sugeta, Establishment of the Fatigue Cumulative Damage Evaluation Based on the Applied Load for the Spot Welded Joints Using 590 MPa-Class Automobile Steel, Trans. Jpn. Soc. Mech. Eng. Ser. A, 2012, 78(781), p 278–288CrossRefGoogle Scholar
  19. 19.
    K. Shiozawa, T. Kashiwagi, T. Murai, and T. Takahashi, Fatigue Behaviour and Fractography of Extruded AZ80 Magnesium Alloys in Very High Cycle Regime, Procedia Eng., 2010, 2, p 183–191CrossRefGoogle Scholar
  20. 20.
    D. Ando, J. Koike, and Y. Sutou, Relationship Between Deformation Twinning and Surface Step Formation in AZ31 Magnesium Alloys, Acta Mater., 2010, 58, p 4316–4324CrossRefGoogle Scholar
  21. 21.
    J. Koike, N. Fujiyama, D. Ando, and Y. Sutou, Roles of Deformation Twinning and Dislocation Slip in the Fatigue Failure Mechanism of AZ31 Mg Alloys, Scr. Mater., 2010, 63, p 747–750CrossRefGoogle Scholar
  22. 22.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065CrossRefGoogle Scholar
  23. 23.
    J. Koike and R. Ohyama, Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature, Acta Mater., 2005, 53, p 1963–1972CrossRefGoogle Scholar
  24. 24.
    K.Y. Xie, Z. Alam, A. Caffee, and K.J. Hemker, Pyramidal I, Slip in C-Axis Compressed Mg Single Crystals, Scr. Mater., 2016, 112, p 75–78CrossRefGoogle Scholar
  25. 25.
    H. Fan and J.A. El-Awady, Towards Resolving the Anonymity of Pyramidal Slip in Magnesium, Mater. Sci. Eng. A, 2012, 644, p 318–324CrossRefGoogle Scholar
  26. 26.
    L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw, Twinning–Detwinning Behavior During the Strain-Controlled Low-Cycle Fatigue Testing of a Wrought Magnesium Alloy, ZK60A, Acta Mater., 2008, 56, p 688–695CrossRefGoogle Scholar
  27. 27.
    L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, and P.K. Liaw, Internal Stress Relaxation and Load Redistribution During the Twinning–Detwinning-Dominated Cyclic Deformation of a Wrought Magnesium Alloy, ZK60A, Acta Mater., 2008, 56, p 3699–3707CrossRefGoogle Scholar
  28. 28.
    B.M. Morrow, R.J. Mccabe, E.K. Cerreta, and C.N. Tomé, In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg, Metall. Mater. Trans. A, 2014, 45A, p 36–40CrossRefGoogle Scholar
  29. 29.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Chapter 12, Wiley, New York, 1983, p 457–517Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Kazuhiro Tamada
    • 1
  • Toshifumi Kakiuchi
    • 1
  • Yoshihiko Uematsu
    • 1
  1. 1.Department of Mechanical EngineeringGifu UniversityGifuJapan

Personalised recommendations