Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219

  • S. V. S. Narayana Murty
  • Aditya Sarkar
  • P. Ramesh Narayanan
  • P. V. Venkitakrishnan
  • J. Mukhopadhyay
Article

Abstract

Isothermal uniaxial compression tests were conducted on aluminum alloy AA2219 to study the evolution of microstructure over a wide range of temperatures (300-500 °C) and strain rates (0.001-100 s−1) with a view to study the flow behavior and concurrent microstructural evolution. True stress-true strain curves showed only a gradual flow softening at all temperatures except at 300 °C where strain hardening was followed by severe flow softening. Processing map delineating the stable ‘safe’ and unstable ‘unsafe’ regions during hot working is developed and validated by comparing the microstructures observed in the deformed compression specimens. Optimum processing parameters (temperature 450 °C and strain rate 0.001 s−1) for hot deformation of AA2219 were proposed based on contour maps of efficiency of power dissipation and strain rate sensitivity parameter. The activation energy value (Q avg) of AA2219 for hot working was computed to be 169 kJ/mol. Finally, a constitutive equation for hot working of AA2219 was established as: \(\dot{\varepsilon } = 4.99 \times 10^{9} \cdot \exp (0.06149\sigma ) \cdot \exp \left( { - 168.958/RT} \right)\).

Keywords

activation energy aluminum alloy AA2219 constitutive equation hot workability processing maps 

References

  1. 1.
    J. Zhang, B. Chen, and B. Zhang, Effect of Initial Microstructure on the Hot Compression Deformation Behaviour of a 2219 Aluminium Alloy, Mater. Des., 2012, 34, p 15–21CrossRefGoogle Scholar
  2. 2.
    S.G. Pantelakis and N.D. Alexopoulos, Assessment of the Ability of Conventional and Advanced Wrought Aluminium Alloys for Mechanical Performance in Light-Weight Applications, Mater. Des., 2008, 29, p 80–91CrossRefGoogle Scholar
  3. 3.
    N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, and K.M. George, Microstructure and Micro-Texture Evolution During Large Strain Deformation of an Aluminium-Copper-Lithium Alloy AA2195, Mater. Des., 2015, 65, p 862–868CrossRefGoogle Scholar
  4. 4.
    H.J. Frost and M.F. Ashby, Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982Google Scholar
  5. 5.
    R. Raj, Development of a Processing Map for Use in Warm Forming and Hot Forming Process, Metall. Trans. A, 1981, 12, p 1089–1097CrossRefGoogle Scholar
  6. 6.
    S.L. Semiatin and G.D. Lahoti, The Occurrence of Shear Bands in Isothermal Hot Forging, Metall. Trans. A, 1992, 13, p 275–288CrossRefGoogle Scholar
  7. 7.
    G.E. Dieter, Metals Hand Book, 9th ed., vol. 14, American Society for Metals, Metals Park, OH, 1988, p 363–372Google Scholar
  8. 8.
    S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, American Society for Metals, Metals park, Ohio, 1984Google Scholar
  9. 9.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behaviour in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15A, p 1883–1892CrossRefGoogle Scholar
  10. 10.
    H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende, Modeling Techniques Used In Forging Process Design, Metals Handbook, Forming and Forging, vol. 14, ASM International, Metals Park, OH, 1988, p 417–438Google Scholar
  11. 11.
    J.M. Alexander, Mapping Dynamic Material Behaviour in Modeling of Hot Deformation of Steels, J.G. Lenard, Ed., Springer, Berlin, 1989, p 101–115 CrossRefGoogle Scholar
  12. 12.
    H.J. McQueen, Elevated Temperature Deformation at Forming Rates of 10−2–102 s−1, Metall. Mater. Trans. A, 2002, 33A, p 345–362CrossRefGoogle Scholar
  13. 13.
    R. Kaibyshev, O. Sitdikov, I. Mazurina, and D.R. Leuser, Deformation Behaviour of 2219 Al Alloy, Mater. Sci. Eng. A, 2002, 34, p 104–113CrossRefGoogle Scholar
  14. 14.
    H. Ziegler, Progress in Solid Mechanics, I.N. Sneddon and R. Hill, Ed., Wiley, New York, NY, 1965, p 91–193 Google Scholar
  15. 15.
    S.V.S. Narayana Murty, M.S. Sarma, and B. Nageswara Rao, On the Evaluation of Efficiency Parameter in Processing Maps, Metall. Mater. Trans. A, 1997, 28A, p 1581–1582CrossRefGoogle Scholar
  16. 16.
    S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45, p 15–26CrossRefGoogle Scholar
  17. 17.
    S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s Criterion on the Instability Regions in Processing Maps, J. Mater. Sci. Lett., 1998, 17, p 1203–1205CrossRefGoogle Scholar
  18. 18.
    S.V.S. Narayana Murty and B. Nageswara Rao, On the Dynamic Material Model for the Hot Deformation of Materials, J. Mater. Sci. Lett., 1999, 18, p 1757–1758CrossRefGoogle Scholar
  19. 19.
    S.V.S. Narayana Murty and B. NageswaraRao, On the Development of Instability Criteria During Hot Working with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82CrossRefGoogle Scholar
  20. 20.
    S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Development and Validation of a Processing Map for AFNOR 7020 Aluminum Alloy, Mater. Sci. Technol., 2004, 20, p 772–782CrossRefGoogle Scholar
  21. 21.
    C.M. Sellars and WJMcG Tegart, Hot Workability, Int. Metall. Rev., 1972, 17, p 1–24 ((Review 158)Google Scholar
  22. 22.
    J. Jonas, C.M. Sellars, and WJMcG Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1972, 14, p 1–24 ((Review 130))Google Scholar
  23. 23.
    H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRefGoogle Scholar
  24. 24.
    C. Shi and X.-G. Chen, Evolution of Activation Energies for Hot Deformation of 7150 Aluminum Alloys with Various Zr and V Additions, Mater. Sci. Eng. A, 2016, 650, p 197–209CrossRefGoogle Scholar
  25. 25.
    C. Shi, W. Mao, and X.-G. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91CrossRefGoogle Scholar
  26. 26.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207CrossRefGoogle Scholar
  27. 27.
    R. Kaibyshev, I. Mazurina, and O. Sitdikov, Geometric Dynamic Recrystallization in an AA2219 Alloy Deformed to Large Strains at an Elevated Temperature, Mater. Sci. Forum, 2004, 467–470, p 1199–1204CrossRefGoogle Scholar
  28. 28.
    N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution During Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 236–241CrossRefGoogle Scholar
  29. 29.
    E.T. George and D.S. MacKenzie, Ed., Handbook of Aluminium: Volume 2: Alloy Production and Materials Manufacturing, Marcel Dekker Inc., New York, 2003, p 213–214Google Scholar
  30. 30.
    R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Leuser, and T.G. Nieh, Superplasticity in a 2219 Alumnium Alloy, Scr. Mater., 2001, 44, p 2411–2417CrossRefGoogle Scholar
  31. 31.
    C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22CrossRefGoogle Scholar
  32. 32.
    T. Sheppard, Ed., Extrusion of Aluminium Alloys, 1st ed., Springer Science+Business Media, Dordrecht, 1999, p 135Google Scholar
  33. 33.
    K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Technol. Weld. Join., 2010, 15, p 260–266CrossRefGoogle Scholar
  34. 34.
    E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pre-Treatments, Mater. Sci. Eng. A, 1995, 197, p 181–198CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • S. V. S. Narayana Murty
    • 1
  • Aditya Sarkar
    • 2
  • P. Ramesh Narayanan
    • 1
  • P. V. Venkitakrishnan
    • 1
  • J. Mukhopadhyay
    • 2
  1. 1.Materials and Mechanical EntityVikram Sarabhai Space CenterTrivandrumIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of TechnologyGandhinagarIndia

Personalised recommendations