Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties



The article is focused on selected dielectric and electrical properties of ZrSiO4, which was plasma sprayed by a water-stabilized plasma system. A combination of two feeding distances and three spray distances was utilized for spraying and the structure and properties of samples evaluated. The coatings were tested in alternating electric field to determine capacity and loss factor with the frequency from 100 Hz to 100 kHz. Relative permittivity was calculated from the capacity. Volume resistivity and dielectric strength of ZrSiO4 were measured in a direct current regime. The aim was to test electrically this natural silicate material in the form of plasma-sprayed deposits. Microstructure was characterized by relatively large and non-globular pores. Crystallites were very small, about 10-20 nm. Dielectric losses were small, resistivity as well as strength relatively high. This silicate ceramic was recognized to be prospective for electrical engineering.


electrical properties insulators plasma spraying silica-substituted zirconia zircon 



This work was supported by Multidisciplinary Research Center of Advanced Materials (AdMat), Reg. No. 14-36566G.


  1. 1.
    J. Dubský, B. Kolman, and K. Neufuss, Phase Composition Changes in Annealed Plasma-Sprayed Zircon-Alumina Coatings, Thermal Spray: A United Forum for Scientific and Technological Advances, ASM International, Materials Park, OH, 1998, p 473–476Google Scholar
  2. 2.
    J. Dubský, B. Kolman, and A. Buchal, Phase Composition Changes in Plasma Sprayed Zircon-Alumina Tubes, Thermal Spray, Meeting the Challenges of the 21st Century, ASM International, Materials Park, OH, 1998, p 1613–1616Google Scholar
  3. 3.
    R.S. Pavlik, Jr., H.J. Holland, and E.A. Payzant, Thermal Decomposition of Zircon Refractories, J. Am. Ceram. Soc., 2001, 84(12), p 2930–2936CrossRefGoogle Scholar
  4. 4.
    P. Chráska, K. Neufuss, and H. Herman, Plasma Spraying of Zircon, J. Thermal Spray Technol., 1997, 6(4), p 445–448CrossRefGoogle Scholar
  5. 5.
    P. Ramaswamy, S. Seetharamu, K.B.R. Varma, and K.J. Rao, Thermal Barrier Coating Application of Zircon Sand, J. Thermal Spray Technol., 1990, 8(3), p 8447–8453Google Scholar
  6. 6.
    Y. Li and K.A. Khor, Microstructure and Composition Analysis in Plasma Sprayed Coatings of Al2O3/ZrSiO4 Mixtures, Surf. Coat. Technol., 2002, 150(2–3), p 125–132CrossRefGoogle Scholar
  7. 7.
    S. Schelz, N. Branland, D. Plessis, B. Minot, and F. Guillet, Laser Treatment of Plasma-Sprayed ZrSiO4 Coatings, Surf. Coat. Technol., 2006, 200(22–23), p 6384–6388CrossRefGoogle Scholar
  8. 8.
    M. Suzuki, S. Sodeoka, T. Inoue, K. Ueno, S. Oki, and K. Shimosaka, Structure and Properties of Plasma-Sprayed Zircon Coating, Proceedings of the 1st International Thermal Spray Conference: Thermal Spray—Surface Engineering via Applied Research, ASM International, Materials Park, OH, 2000, p 333–338Google Scholar
  9. 9.
    M. Suzuki, T. Inoue, S. Sodeoka, S. Oki, and K. Shimosaka, Structure control of Plasma Sprayed Zircon Coating by Substrate Temperature, J. Inst. Appl. Plasma Sci., 2000, 8 Google Scholar
  10. 10.
    A. Kaiser, M. Lobert, and R. Telle, Thermal Stability of Zircon (ZrSiO4), J. Eur. Ceram. Soc., 2008, 28, p 2199–2211CrossRefGoogle Scholar
  11. 11.
    P. Ctibor, J. Sedláček, K. Neufuss, J. Dubský, and P. Chráska, Dielectric Properties of Plasma Sprayed Silicates, Ceram. Int., 2005, 31, p 315–321CrossRefGoogle Scholar
  12. 12.
    Czech Standard ČSN IEC 250, Czech Institute for Standardization, 1997 (in Czech)Google Scholar
  13. 13.
    Czech Standard CSN EN 60243-1 (IEC 60243-1:1998), Czech Institute for Standardization, 1999.Google Scholar
  14. 14.
    P. Ctibor and M. Hrabovsky, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Particle Parameters in the Flight and Character of Sprayed Coating, J. Eur. Ceram. Soc., 2010, 30, p 3131–3136CrossRefGoogle Scholar
  15. 15.
    P. Ctibor, K. Neufuss, Z. Pala, J. Kotlan, and J. Soumar, Dielectric and Mechanical Properties of Plasma-Sprayed Olivine, Rom. Rep. Phys., 2015, 67(2), p 601–617Google Scholar
  16. 16.
    J. Matějíček, O. Chumak, M. Konrád, J. Oberste-Berghaus, and M. Lamontagne, The Influence of Spraying Parameters on In-Flight Characteristics of Tungsten Particles and the Resulting Splats Sprayed by Hybrid Water-Gas Stabilized Plasma Torch, Thermal Spray Connects: Explore Its Surfacing Potential! Proceedings of the International Thermal Spray Conference, Basel, 2005, 594–599.Google Scholar
  17. 17.
    J. Cizek and K.A. Khor, Role of In-Flight Temperature and Velocity of Powder Particles on Plasma Sprayed Hydroxyapatite Coating Characteristics, Surf. Coat. Technol., 2012, 206, p 2181–2191CrossRefGoogle Scholar
  18. 18.
    D.K. Smith and W. Newkirk, The Crystal Structure of Baddeleyite (monoclinic ZrO2) and its Relation to the Polymorphism of ZrO2, Acta Crystallogr. A, 1965, 18(6), p 983–991CrossRefGoogle Scholar
  19. 19.
    G. Teufer, The Crystal Structure of Tetragonal ZrO2, Acta Crystallogr. A, 1962, 15(11), p 187–1195Google Scholar
  20. 20.
    R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 1972, A32, p 751–767Google Scholar
  21. 21.
    T. Puclin, W.A. Kaczmarek, and B.W. Ninham, Mechanochemical Processing of ZrSiO4, Mater. Chem. Phys., 1995, 40, p 73–81CrossRefGoogle Scholar
  22. 22.
    P. Ctibor, J. Sedláček, and K. Neufuss, Influence of Chemical Composition on Dielectric Properties of Al2O3 and ZrO2 Plasma Deposits, Ceram. Int., 2003, 29, p 527–532CrossRefGoogle Scholar
  23. 23.
    S. Sayan, Structural, Electronic, and Dielectric Properties of Ultrathin Zirconia Films on Silicon, Appl. Phys. Lett., 2005, 86, p 152902CrossRefGoogle Scholar
  24. 24.
    R. Pazhani, H. Padma Kumar, A. Varghese, A. Moses Ezhil Raj, S. Solomon, and J.K. Thomas, Synthesis, Vacuum Sintering and Dielectric Characterization of Zirconia (t-ZrO2) Nanopowder, J. Alloys Compd., 2011, 509, p 6819–6823CrossRefGoogle Scholar
  25. 25.
    P. Ctibor, K. Neufuss, Z. Pala, J. Kotlan, and J. Soumar, Dielectric and Mechanical Properties of Plasma-Sprayed Olivine, Rom. Rep. Phys., 2015, 67(2), p 600–617Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.Institute of Plasma Physics ASCRPraha 8Czech Republic

Personalised recommendations