Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1562–1568 | Cite as

The Effect of Thermo-Mechanical Treatment on Structure of Ultrahigh Carbon PM Steel

  • Piotr NikielEmail author
  • Stefan Szczepanik
  • Stanisław Jan Skrzypek
  • Łukasz Rogal


The effects of thermo-mechanical treatment on selected properties related to the structure of Fe-0.85Mo-0.65i-1.4C powder metallurgy (PM) steel are reported. Three kinds of initial microstructure of specimens, i.e., pearlite + ferrite + cementite, martensite + retained austenite and α + spheroidized cementite were examined. Processing was carried out on a plastometer-dilatometer Bähr machine by compression cylindrical specimens at 775 °C at a strain rate of 0.001 s−1. X-ray diffraction was carried out with symmetrical Bragg-Brentano and grazing incident angle methods on a D8-Advance diffractometer with filtered radiation of cobalt CoK α . The following features were determined: texture, density of dislocations, density of vacancies, lattice parameter of Fe α and mean size of crystallites. Significant differences in structure were observed, especially in quenched specimen, as a result of the thermo-mechanical treatment. Regardless of initial state of the specimens, the determined properties were on a similar level. Crystallite size was in the range 97-106 nm, crystallite texture (I{200}/I{110}) × 10 = 1.15-1.62 and density of vacancies I{110}/I{220} = 7.06-7.52.


crystallographic texture density of lattice defects powder metallurgy thermo-mechanical processing ultrahigh carbon steel x-ray 


  1. 1.
    K. Tsuzaki, E. Sato, S. Furimoto, T. Furuhara, and T. Maki, Formation of an (a + Θ) Microduplex Structure Without Thermomechanical Processing in Superplastic Ultrahigh Carbon Steels, Scr. Mater., 1999, 40(6), p 675–681CrossRefGoogle Scholar
  2. 2.
    O.D. Sherby, T. Oyama, D.W. Kum, B. Walser, and J. Wadsworth, Ultrahigh Carbon Steel, JOM-US, 1985, 37(6), p 50–56CrossRefGoogle Scholar
  3. 3.
    T. Wu, Y. Gao, M. Wang, X. Li, Y. Zhao, and Q. Zou, Influence of Initial Microstructure on Warm Deformation Processability and Microstructure of an Ultrahigh Carbon Steel, J. Iron. Steel Res. Int., 2014, 21, p 2152–2159Google Scholar
  4. 4.
    X. Zhaoa and T.F. Jing, Warm Deformation Behavior of Medium Carbon Steel with Different Initial Microstructures, Mater. Sci. Eng. A, 2012, 543, p 267–270CrossRefGoogle Scholar
  5. 5.
    L. Li, W. Yang, and Z. Sun, Microstructure Evolution of a Pearlitic Steel during Hot Deformation of Undercooled Austenite and Subsequent Annealing, Metall. Mater. Trans. A, 2008, 39A(3), p 624–635CrossRefGoogle Scholar
  6. 6.
    Y.G. Ko, B.W. Lee, J.S. Lee, D.Y. Choi, and D.H. Shin, Spheroidization behaviour of 1.0% carbon steel processed by equal channel angular extrusion and annealing, Mater. Sci. Technol., 2012, 28(1), p 116–119CrossRefGoogle Scholar
  7. 7.
    D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, and O.D. Sherby, The Case for Ultrahigh Carbon Steel as Structural Materials, JOM-US, 1993, 45(8), p 40–46CrossRefGoogle Scholar
  8. 8.
    C.K. Syn, D.R. Lesuer, and O.D. Sherby, Influence of Microstructure on Tensile Properties of Spheroidized Ultrahigh-Carbon (1.8 Pct C) Steel, Metall. Mater. Trans. A, 1994, 25A, p 1481–1493CrossRefGoogle Scholar
  9. 9.
    O.D. Sherby, B. Walser, C.M. Young, and E.M. Cady, Superplastic UHCSs, Scr. Metall., 1975, 9(5), p 569–574CrossRefGoogle Scholar
  10. 10.
    H. Zhang, B. Bai, and D. Raabe, Superplastic Martensitic Mn-Si-Cr-C Steel with 900% Elongation, Acta Mater., 2011, 59, p 5787–5802CrossRefGoogle Scholar
  11. 11.
    S. Szczepanik and J. Sińczak, Determination of the Conditions for Heavy Deformations of Sintered Steel Containing 1.4%C, Metall. Foundry Eng., 1994, 20(4), p 441–448Google Scholar
  12. 12.
    A.A.S. Abosbaia, Design and Processing Low Alloy High Carbon Steel by Powder Metallurgy. PhD Thesis, University of Bradford (2010)Google Scholar
  13. 13.
    A.A.S. Abosbaia, S.C. Mitchell, M. Youseffi, and A.S. Wronski, Liquid Phase Sintering, Heat Treatment and Properties of Ultrahigh Carbon Steels, Powder Metall., 2011, 54(5), p 592–598CrossRefGoogle Scholar
  14. 14.
    S. Szczepanik, S.C. Mitchell, A.S. Wronski, A.A.S. Abosbaia, P. Nikiel, and J. Krawiarz, Microstructure Evolution in Fully Dense Warm Forged Sintered Ultrahigh Carbon Steel, Powder Metall. Prog., 2011, 11(1–2), p 78–84Google Scholar
  15. 15.
    S. Szczepanik, S.C. Mitchell, A.A.S. Abosbaia, and A.S. Wronski, Warm Forging of Spheroidised Ultrahigh Carbon Steel, Powder Metall. Prog., 2010, 10(1), p 59–65Google Scholar
  16. 16.
    S. Szczepanik, P. Nikiel, S.C. Mitchell, and R. Kawalla, Microstructure evolution in warm forged sintered ultrahigh carbon steel, Arch. Civ. Mech. Eng., 2015, 15(2), p 301–307CrossRefGoogle Scholar
  17. 17.
    S.J. Skrzypek, M. Witkowska, J. Kowalska, and K. Chruściel, Zastosowanie Nieniszczących Dyfrakcyjnych Metod Rentgenowskich do Charakteryzowania Stanu struKtury Materiałów, Hutnik Wiad. Hutnicze, 2012, 79(4), p 238–246 (in Polish) Google Scholar
  18. 18.
    B.D. Cullity, Elements of x-ray Diffraction, Addison-Wesley Pub. Co, Reading, 1956Google Scholar
  19. 19.
    T. Furuhara and B. Poorganji, Formation of Ultrafine Grained Ferrite + Cementite Duplex Structure by Warm Deformation, Advanced Steels—The Recent Scenario in Steel Science and Technology, Y. Weng et al., Ed., Springer, Berlin, 2011, p 495–500 Google Scholar
  20. 20.
    B. Poorganji, G. Miyamoto, T. Makib, and T. Furuhara, Formation of Ultrafine Grained Ferrite by Warm Deformation of Lath Martensite in Low-Alloy Steels with Different Carbon Content, Scr. Mater., 2008, 59, p 279–281CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Piotr Nikiel
    • 1
    Email author
  • Stefan Szczepanik
    • 1
  • Stanisław Jan Skrzypek
    • 1
  • Łukasz Rogal
    • 2
  1. 1.AGH University of Science and TechnologyKrakówPoland
  2. 2.Institute of Metallurgy and Materials Science of the Polish Academy of SciencesKrakówPoland

Personalised recommendations