Journal of Materials Engineering and Performance

, Volume 25, Issue 12, pp 5173–5188 | Cite as

Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

  • T. F. A. SantosEmail author
  • E. A. Torres
  • J. C. Lippold
  • A. J. Ramirez


Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.


duplex stainless steel friction stir welding microstructural characterization superduplex stainless steel 



The authors thank Petrobras and FINEP for financial support and CNPq for scholarships (141686/2009-0 and 201038/2011-0). The assistance provided by LNNano (CNPEM/MCTI) and OSU is gratefully acknowledged. The UNS S322101 DSS and UNS S32750 SDSS steel plates were kindly donated by Outokumpu, UNS S32760 by Weir Materials, and UNS S32205 by Aperam South America. TFAS thanks UFPE and FACEPE.

Supplementary material

11665_2016_2357_MOESM1_ESM.jpg (769 kb)
Supplementary material 1 (JPEG 768 kb)
11665_2016_2357_MOESM2_ESM.jpg (763 kb)
Supplementary material 2 (JPEG 762 kb)


  1. 1.
    M.F. McGuire, Duplex Stainless Steel, Stainless Steel for Design Engineers, M.F. McGuire, Ed., ASM International, Ohio, 2008, p 91–108 Google Scholar
  2. 2.
    S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. De Souza, Characterization of Microstructure, Chemical Composition, Corrosion Resistance and Toughness of a Multipass Weld Joint of Superduplex Stainless Steel UNS S32750, Mater. Charact., 2007, 58, p 610–616CrossRefGoogle Scholar
  3. 3.
    B.I. Voronenko, Austenitic-Ferritic Stainless Steels: A State-of-the-Art Review, Metal. Sci. Heat Treat., 1997, 39, p 428–437CrossRefGoogle Scholar
  4. 4.
    J.C. Lippold and D.J. Kotechi, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Ohio, 2005Google Scholar
  5. 5.
    Karlsson, L. Welding Duplex Stainless Steels: A Review Of Current Recommendations. IIW Doc. IX-H-736-11, 2011; 1–17.Google Scholar
  6. 6.
    R.S. Mishra and M.W. Mahoney, Friction Stir Welding and Processing, ASM International, Ohio, 2007Google Scholar
  7. 7.
    T.F.A. Santos, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Microstructure Evaluation of UNS S32205 Duplex Stainless Steel Friction Stir Welds, REM, 2013, 66(2), p 187–191Google Scholar
  8. 8.
    T.F.A. Santos, H.S. Idagawa, and A.J. Ramirez, Thermal History in UNS S32205 Duplex Stainless Steel Friction Stir Welds, Sci. Technol. Weld. Join., 2014, 19, p 150–156CrossRefGoogle Scholar
  9. 9.
    H.S. Idagawa, T.F.A. Santos, and A.J. Ramirez, Differential Evolution Algorithm Applied to FSW Model Calibration, J. Phys. Confer. Ser., 2014, 490, p 1–5CrossRefGoogle Scholar
  10. 10.
    T.F.A. Santos, E.A. Torres, T.F.C. Hermenegildo, and A.J. Ramirez, Development of Ceramic Backing for Friction Stir Welding and Processing, Soldag. Insp., 2014, 19(2), p 104–113CrossRefGoogle Scholar
  11. 11.
    T.F.A. Santos, E.B. Fonseca, E.A. Torres, and A.J. Ramirez, Friction Stir Welding of Duplex and Superduplex Stainless Steels and Some Aspects of Microstructural Characterization and Mechanical Performance, Mater Res, 2016, 19(1), p 117–131CrossRefGoogle Scholar
  12. 12.
    T. F. A. Santos . Ph.D thesis, University of Campinas, Campinas, 2012 (in Portuguese).Google Scholar
  13. 13.
    Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, and C.O. Petterson, Microstructure and Mechanical Properties of Friction Stir Welded SAF 2507 Super Duplex Stainless Steel, Mater. Sci. Eng., A, 2005, 397, p 376–384CrossRefGoogle Scholar
  14. 14.
    T. Saeid, A. Abdollah-Zadeh, H. Assadi, and Ghaini F. Malek, Effect of Friction Stir Welding Speed on the Microstructure and Mechanical Properties of a Duplex Stainless Steel, Mater. Sci. Eng., A, 2008, 496, p 262–268CrossRefGoogle Scholar
  15. 15.
    ASTM E112-10, Standard Test Methods for Determining Average Grain Size, West Conshohocken, 2010.Google Scholar
  16. 16.
    A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Microstructural Evolution During Hot Deformation of Duplex Stainless Steel, Mater. Sci. Technol., 2007, 23(12), p 1478–1484CrossRefGoogle Scholar
  17. 17.
    A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite–Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng., A, 2011, 528(3), p 1448–1454CrossRefGoogle Scholar
  18. 18.
    A. Dehghan-Manshadi and P.D. Hodgson, Effect of δ-ferrite Co-existence on Hot Deformation and Recrystallization of Austenite, J. Mater. Sci., 2008, 43(18), p 6272–6277CrossRefGoogle Scholar
  19. 19.
    T. Saeid, A. Abdollah-Zadeh, T. Shibayanagi, K. Ikeuchi, and H. Assadi, On the Formation of Grain Structure During Friction Stir Welding of Duplex Stainless Steel, Mater. Sci. Eng., A, 2010, 527, p 6484–6488CrossRefGoogle Scholar
  20. 20.
    J.-Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng., A, 2005, 405, p 277–286CrossRefGoogle Scholar
  21. 21.
    A.J. Ramirez, . Ph.D thesis, University of São Paulo, São Paulo, 2001.Google Scholar
  22. 22.
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104CrossRefGoogle Scholar
  23. 23.
    E. Bettini, U. Kivisäkk, C. Leygraf, and J. Pan, Study of Corrosion Behavior of a 2507 Super Duplex Stainless Steel: Influence of Quenched-in and Isothermal Nitrides, Int. J. Electrochem. Sci., 2014, 9(1), p 61–80Google Scholar
  24. 24.
    J.M. Pardal, S.S.M. Tavares, M.D.P.C. Fonseca, J.A.D. Souza, L.M. Vieira, and H.F.G.D. Abreu, Deleterious Phases Precipitation on Superduplex Stainless Steel UNS S32750: Characterization by Light Optical and Scanning Electron Microscopy, Mater. Res., 2010, 13(3), p 401–407CrossRefGoogle Scholar
  25. 25.
    T. Saeid, A. Abdollah-Zadeh, T. Shibayanagi, K. Ikeuchi, and H. Assadi, On the Formation of Grain Structure During Friction Stir Welding of Duplex Stainless Steel, Mater. Sci. Eng. A, 2010, 527(24), p 6484–6488CrossRefGoogle Scholar
  26. 26.
    H.B. Cui, G.M. Xie, Z.A. Luo, J. Ma, G.D. Wang, and R.D.K. Misra, Microstructural Evolution and Mechanical Properties of the Stir Zone in Friction Stir Processed AISI201 Stainless Steel, Mater. Des., 2016, 106, p 463–475Google Scholar
  27. 27.
    D.M. Escriba, R.L. Materna-Morris, R.L. Plaut, and A.F. Padilha, Chi-phase Precipitation in a Duplex Stainless Steel, Mater. Charact., 2009, 60, p 1214–1219CrossRefGoogle Scholar
  28. 28.
    W. Reick, M. Pohr, and A.F. Padilha, Recrystallization-Transformation Combined Reactions During Recrystallization Annealing of a Cold Rolled Ferritic-Austenitic Duplex Stainless Steel, ISIJ Int., 1998, 38, p 567–571CrossRefGoogle Scholar
  29. 29.
    R. J. Steel, C. J. Sterling . Friction Stir Welding of 2205 Duplex Stainless Steel and 3Cr12 Steels. In: Proceedings of 14th International Offshore and Polar Eng. Conference, 2004; 1–6.Google Scholar
  30. 30.
    R.J. Steel, C.-O. Pettersson, S.M. Packer, C.D. Sorenser, Y.S. Sato, T.W. Nelson, and C.J. Sterling, Friction Stir Welding of SAF 2507 (UNS S32750) Super Duplex Stainless Steel, Stainl. Steel World, 2004, 16, p 27–31Google Scholar
  31. 31.
    V. Amigó, V. Bonache, L. Teruel, and A. Vicente, Propiedades mecânicas de las uniones por láser de aceros inoxidables dúplex, Rev. Metalurgia, 2005, 41, p 90–97CrossRefGoogle Scholar
  32. 32.
    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Rapid Formation of the Sigma Phase in 304 Stainless Steel During Friction Stir Welding, Scr. Mater., 2003, 49, p 1175–1180CrossRefGoogle Scholar
  33. 33.
    C.D. Sorensen, T.W. Nelson . Sigma phase formation in friction stirring of iron-nickel-chromium alloys. In: 7th International Conference on Trends in Weld. Res. 2005, Pine Mountain, pp 441–446.Google Scholar
  34. 34.
    G.S. Reis, A.M. Jorge, and O. Balancin, Influence of the Microstructure of Duplex Stainless Steels on Their Failure Characteristics During Hot Deformation, Mater. Res., 2000, 3, p 31–35CrossRefGoogle Scholar
  35. 35.
    S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316–329CrossRefGoogle Scholar
  36. 36.
    R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Phase Transformation and Mechanical Behavior in Annealed 2205 Duplex Stainless Steel Welds, Mater. Charact., 2008, 59(4), p 447–453CrossRefGoogle Scholar
  37. 37.
    G.D. Verros and N.A. Malamataris, Finite Element Analysis of Ferrite–Austenite Diffusion Controlled Phase Transformation, Comp. Mater. Sci., 2002, 24(3), p 380–392CrossRefGoogle Scholar
  38. 38.
    S.V. Divinski, J. Geise, E. Rabkin, and C. Herzig, Grain Boundary Self-diffusion in α-iron of Different Purity: Effect of Dislocation Enhanced Diffusion: Dedicated to Prof. Dr. Helmut Mehrer on the Occasion of his 65th Birthday, Zeitschrift für Metallkunde, 2004, 95(10), p 945–952CrossRefGoogle Scholar
  39. 39.
    P. Cizek and B.P. Wynne, A Mechanism of Ferrite Softening in a Duplex Stainless Steel Deformed in Hot Torsion, Mater. Sci. Eng., A, 1997, 230(1), p 88–94CrossRefGoogle Scholar
  40. 40.
    L. Duprez, B.C. De Cooman, and N. Akdut, Flow Stress and Ductility of Duplex Stainless Steel During High-Temperature Torsion Deformation, Metall. Mater. Trans. A, 2002, 33, p 1931–1938CrossRefGoogle Scholar
  41. 41.
    A. Momeni, K. Dehghani, and X.X. Zhang, Mechanical and Microstructural Analysis of 2205 Duplex Stainless Steel Under Hot Working Condition, J. Mater. Sci., 2012, 47, p 2966–2974CrossRefGoogle Scholar
  42. 42.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng., A, 1997, 238, p 219–274CrossRefGoogle Scholar
  43. 43.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2004, p 628pGoogle Scholar
  44. 44.
    S. Mironov, Y.S. Sato, and H. Kokawa, Processing, Electron Backscatter Diffraction in Materials Science, Springer, Livermore, 2009, p 291–300CrossRefGoogle Scholar
  45. 45.
    A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39(6), p 1359–1370CrossRefGoogle Scholar
  46. 46.
    M. Jafari and A. Najafizadeh, Correlation Between Zener-Hollomon Parameter and Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng., A, 2009, 501(1), p 16–25CrossRefGoogle Scholar
  47. 47.
    A.M. Jorge, G.S. Reis, and O. Balancin, Influence of the Microstructure on the Plastic Behaviour of Duplex Stainless Steels, Mater. Sci. Eng., A, 2011, 528(6), p 2259–2264CrossRefGoogle Scholar
  48. 48.
    C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31Mg Alloys, Scr. Mater., 2004, 51(6), p 509–514CrossRefGoogle Scholar
  49. 49.
    O. Balancin, W.A.M. Hoffmann, and J.J. Jonas, Influence of Microstructure on the Flow Behavior of Duplex Stainless Steels at High Temperatures, Metall. Mater. Trans. A, 2000, 31(5), p 1353–1364CrossRefGoogle Scholar
  50. 50.
    Y. Maehara, Effect of Microstructure on Hot Deformation in Duplex Stainless Steels, Scr. Metall. Mater., 1992, 26, p 1701–1706CrossRefGoogle Scholar
  51. 51.
    P. Cizek, B.P. Wynne, and W.M. Rainforth, EBSD Investigation of the Microstructure and Texture Characteristics of Hot Deformed Duplex Stainless Steel, J. Microsc., 2006, 222, p 85–96CrossRefGoogle Scholar
  52. 52.
    J.-Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51, p 713–729CrossRefGoogle Scholar
  53. 53.
    J.-Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng., A, 2005, 405, p 277–286CrossRefGoogle Scholar
  54. 54.
    S. Mironov, Y.S. Sato, and H. Kokawa, Microstructural Evolution During Friction Stir-Processing of Pure Iron, Acta Mater., 2008, 56, p 2602–2614CrossRefGoogle Scholar
  55. 55.
    D.B. Williams and C.B. Carter, Transmission Electron Microscopy, 2nd ed., Springer, New York, 2009CrossRefGoogle Scholar
  56. 56.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jsensen, M.E. Kassner, W.E. King, T.R. Mckelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRefGoogle Scholar
  57. 57.
    Friction Stir Welding of Duplex Stainless Steels (in Portuguese). Soldag Insp, 2016, 21 (1): 59–69.Google Scholar
  58. 58.
    Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., A, 2003, 354(1), p 298–305CrossRefGoogle Scholar
  59. 59.
    G.M. Xie, Z.Y. Ma, and L. Geng, Development of a Fine-Grained Microstructure and the Properties of a Nugget Zone in Friction Stir Welded Pure Copper, Scripta Mater., 2007, 57(2), p 73–76CrossRefGoogle Scholar
  60. 60.
    M.Y. Liu, B. Shi, C. Wang, S.K. Ji, X. Cai, and H.W. Song, Normal Hall-Petch Behavior of Mild Steel with Submicron Grains, Mater. Lett., 2003, 57(19), p 2798–2802CrossRefGoogle Scholar
  61. 61.
    C.C. Koch, Optimization of Strength and Ductility in Nanocrystalline and Ultrafine Grained Metals, Scr. Mater., 2003, 49(7), p 657–662CrossRefGoogle Scholar
  62. 62.
    S. Takaki, K. Kawasaki, and Y. Kimura, Mechanical Properties of Ultra Fine Grained Steels, J. Mater. Process. Technol., 2001, 117(3), p 359–363CrossRefGoogle Scholar
  63. 63.
    N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing, Scr. Mater., 2002, 47(12), p 893–899CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • T. F. A. Santos
    • 1
    • 2
    • 3
    Email author
  • E. A. Torres
    • 4
  • J. C. Lippold
    • 5
  • A. J. Ramirez
    • 1
    • 2
    • 5
  1. 1.School of Mechanical EngineeringUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Brazilian Nanotechnology National LaboratoryCNPEM/MCTICampinasBrazil
  3. 3.Department of Mechanical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  4. 4.Department of Mechanical EngineeringUniversidad de AntioquiaMedellinColombia
  5. 5.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations