Journal of Materials Engineering and Performance

, Volume 25, Issue 12, pp 5238–5251 | Cite as

Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet

  • Sushovan Basak
  • Hrishikesh Das
  • Tapan Kumar Pal
  • Mahadev Shome


Galvanized dual-phase steel sheets are extensively used by the auto industry for their corrosion resistance property. Welding by the metal inert gas (MIG) process causes degradation of the steel in the vicinity of the joint due to excessive zinc evaporation. In order to minimize Zn loss, the MIG brazing process has been tried out in lap joint configuration over a heat input range of 136–204 J mm−1. The amount of zinc loss, intermetallic formation and corrosion properties in the joint area has been evaluated for both MIG brazing and MIG welding. Corrosion rate of 21 mm year−1 has been reduced to 2 mm year−1 by adopting MIGB in place MIGW. Impedance study has shown that the corrosion mechanism in base metal, MIG brazed and MIG welded joints is dominated by charge transfer, diffusion and mixed mode control processes, respectively.


galvanized DP steel MIG brazing MIG welding potentiodynamic study salt spray test electrochemical impedance study 



The work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India. The authors would like to thank Mrs. Nitu Rani of Tata Steel R&D for her valuable assistance in the salt spray corrosion test.


  1. 1.
    M. Manna and M. Dutta, Improvement in Galvanization and Galvannealing Characteristics of DP 590 Steel by Prior Cu or Cu-Sn Flash Coating, Surf. Coat Technol., 2014, 251, p 29–37CrossRefGoogle Scholar
  2. 2.
    B. Ramezanzadeh, M.M. Attar, and M. Farzam, Corrosion Performance of a Hot-Dip Galvanized Steel Treated by Different Kinds of Conversion Coatings, Surf. Coat Technol., 2010, 205, p 874–884CrossRefGoogle Scholar
  3. 3.
    S. Basak, T.K. Pal, M. Shome, and J. Maity, GMA Brazing of Galvannealed Interstitial-Free Steel, Weld. J., 2013, 92, p 29-s–35-sGoogle Scholar
  4. 4.
    C. Chovet and S. Guiheux, Possibilities Offered by MIG and TIG Brazing of Galvanized Ultra High Strength Steels for Automotive Applications, La Metallurgia Italiana, 2006, 7–8, p 47–54Google Scholar
  5. 5.
    H.-Y. Ha, S.-J. Park, J.-Y. Kang, H.-D. Kim, and M.-B. Moon, Interpretation of the Corrosion Process of a Galvannealed Coating Layer on Dual-Phase Steel, Corros. Sci., 2007, 53, p 2430–2436CrossRefGoogle Scholar
  6. 6.
    L. Quintino, G. Pimenta, D. Iordachescu, R.M. Miranda, and N.V. Pepe, MIG Brazing of Galvanized Thin Sheet Joints for Automotive Industry, Mater. Manuf. Process., 2006, 21, p 63–73CrossRefGoogle Scholar
  7. 7.
    G. Banerjee, T.K. Pal, N. Bandyopadhyay, and D. Bhattacharjee, Effect of Welding Conditions on Corrosion Behaviour of Spot Welded Coated Steel Sheets, Corros. Eng. Sci. Technol., 2011, 46, p 64–69CrossRefGoogle Scholar
  8. 8.
    M.R. Bosworth, Effective Heat Input in Pulsed Current Gas Metal Arc Welding with Solid Wire Electrodes, Weld. J., 1991, 70, p 111s–117sGoogle Scholar
  9. 9.
    J.E. Gould, S.P. Khurana, and T. Li, Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels, Weld. J., 2006, 8, p 111s–116sGoogle Scholar
  10. 10.
    J. Mackowiak and N.R. Short, Metallurgy of Galvanized Coatings, Int. Met. Rev., 1979, 24(1), p 1–19CrossRefGoogle Scholar
  11. 11.
    S.J. Rothman, N.L. Peterson, C.M. Walter, and L.J. Nowick, The Diffusion of Copper in Iron, J. Appl. Phys., 1968, 39, p 5041–5044CrossRefGoogle Scholar
  12. 12.
    J. Hirvonen and J. Räisänen, Diffusion of Aluminum in Ion Implanted Alpha Iron, J. Appl. Phys., 1982, 53, p 3314–3316CrossRefGoogle Scholar
  13. 13.
    R.F. Li, Z.S. Yu, and Q.I. Kai, Interfacial Structure and Joint Strengthening in Arc Brazed Galvanized Steels with Copper Based Filler, Trans Nonferr Metal Soc, 2006, 16, p 397–401CrossRefGoogle Scholar
  14. 14.
    Y.U. Zhi-shui, L.I. Rui-feng, and Q.I. Kai, Growth Behavior of Interfacial Compounds in Galvanized Steel Joints with CuSi3 Filler Under Arc Brazing, Trans. Nonferr. Metal. Soc., 2006, 16, p 1391–1396CrossRefGoogle Scholar
  15. 15.
    Y.B. Zhong, Z.M. Ren, Q.X. Sun, Z.S. Jiang, K. Deng, and K.D. Xu, Behavior of Particles in Front of Metallic Solid/Liquid Interface in Electromagnetic Field, Trans. Nonferr. Metal. Soc., 2003, 13, p 755–763Google Scholar
  16. 16.
    H. Baker, Alloy Phase Diagrams, ASM Handbook, Ohio, ASM International, 1992Google Scholar
  17. 17.
    T.K. Rout, Electrochemical Impedance Spectroscopy Study on Multi-layered Coated Steel Sheets, Corros. Sci., 2007, 49, p 794–817CrossRefGoogle Scholar
  18. 18.
    V.S. Raja, C.K. Panday, V.S. Saji, S.T. Vagge, and K. Narasimhan, An electrochemical Study on Deformed Galvanneal Steel Sheets, Surf. Coat. Technol., 2006, 201, p 2296–2302CrossRefGoogle Scholar
  19. 19.
    N. Bozec, N. Blandin, and D. Thierry, Accelerated Corrosion Tests in the Automotive Industry: A Comparison of the Performance Towards Cosmetic Corrosion, Mater. Corros., 2008, 59, p 889–894CrossRefGoogle Scholar
  20. 20.
    E. Almeida and M. Morcillo, Lap-Joint Corrosion of Automotive Coated Materials in Chloride Media. Part 1—Electrogalvanized Steel, Surf. Coat. Technol., 2000, 124, p 169–179CrossRefGoogle Scholar
  21. 21.
    E. Almeida and M. Morcillo, Lap-Joint Corrosion of Automotive Coated Materials in Chloride Media. Part 2—Galvannealed Steel, Surf. Coat. Technol., 2000, 124, p 180–189CrossRefGoogle Scholar
  22. 22.
    A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–Dry Conditions—Influence of Time of Wetness, Corros. Sci., 2004, 46, p 169–181CrossRefGoogle Scholar
  23. 23.
    S.T. Vagge, V.S. Raja, and R. Ganesh Narayanan, Effect of Deformation on the Electrochemical Behavior of Hot-Dip Galvanized Steel Sheets, Appl. Surf. Sci., 2007, 253, p 8415–8421CrossRefGoogle Scholar
  24. 24.
    C. Perez, A. Collazo, M. Izquierdo, P. Merino, and X.R. Novoa, Comparative Study Between Galvanised Steel and Three Duplex Systems Submitted to a Weathering Cyclic Test, Corros. Sci., 2002, 44, p 481–500CrossRefGoogle Scholar
  25. 25.
    V. Barranco, Jr, and S. Feliu, EIS study of the Corrosion Behaviour of Zinc-Based Coatings on Steel in Quiescent 3% NaCl Solution. Part 1: Directly Exposed Coatings, Corros. Sci., 2004, 46, p 2203–2220CrossRefGoogle Scholar
  26. 26.
    A. Amirudin and D. Thierry, Application of Electrochemical Impedance Spectroscopy to Study the Degradation of Polymer-Coated Metals, Prog. Org. Coat., 1995, 26, p 1–28CrossRefGoogle Scholar
  27. 27.
    J.O’.M. Bockris, A.K.N. Reddy, Modern Electrochemistry 1970, 2, p 876.Google Scholar
  28. 28.
    P.P. Sarkar, P. Kumar, M.K. Manna, and P.C. Chakraborti, Microstructural Influence on the Electrochemical Corrosion Behaviour of Dual-Phase Steels in 35% NaCl Solution, Mater. Lett., 2005, 59, p 2488–2491CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Sushovan Basak
    • 1
  • Hrishikesh Das
    • 1
  • Tapan Kumar Pal
    • 1
  • Mahadev Shome
    • 2
  1. 1.Metallurgical and Material Engineering DepartmentJadavpur UniversityKolkataIndia
  2. 2.Material Characterization and Joining GroupR&D, Tata SteelJamshedpurIndia

Personalised recommendations