Journal of Materials Engineering and Performance

, Volume 25, Issue 11, pp 4941–4951 | Cite as

Tribological Characterization of NiAl Self-Lubricating Composites Containing V2O5 Nanowires

  • Yuchun Huang
  • Ahmed Mohamed Mahmoud Ibrahim
  • Xiaoliang ShiEmail author
  • Amr Rady Radwan
  • Wenzheng Zhai
  • Kang Yang
  • Bing Xue


In order to improve the tribological properties of NiAl self-lubricating composites, V2O5 nanowires with average width of 39 nm were synthesized by hydrothermal method. Furthermore, NiAl self-lubricating composites containing V2O5 nanowires (NAV) were successfully fabricated using spark plasma sintering technique. The tribological characteristics and wear mechanisms of NAV were evaluated at different sliding speeds, counterface ball materials and elevated temperatures. The results revealed that the frictional properties of NAV improved slightly with adding V2O5 nanowires at room temperature if compared to NiAl self-lubricating composites without solid lubricant as investigated in previous studies, while the wear mechanisms of NAV change widely with the change of the counterface ball materials and sliding velocities. V2O5 nanowires showed a beneficial effect on tribological performance of NAV at high temperatures owing to the formation of the V2O5-enriched glaze film at temperatures above 700 °C, which acts as the lubricous and protective mask against the severe wear.


metal-matrix composite self-lubricating composites sliding wear wear mechanism 



This work was supported by the Project for Science and Technology Plan of Wuhan City (2013010501010139) and the Key Project for Science and Technology Plan of Henan province (152102210119). Authors also wish to gratefully thank the Material Research and Testing Center of Wuhan University of Technology for their assistance. Authors were grateful to M.J. Yang, S.L. Zhao and W.T. Zhu in Material Research and Test Center of WUT for their kind help with EPMA and FESEM.


  1. 1.
    R. Noebe, R. Bowman, and M. Nathal, Physical and Mechanical Properties of the B2 Compound NiAl, Int. Mater. Rev., 1993, 38(4), p 193–232CrossRefGoogle Scholar
  2. 2.
    D. Miracle, Overview No. 104 the Physical and Mechanical Properties of NiAl, Acta Mater., 1993, 41(3), p 649–684CrossRefGoogle Scholar
  3. 3.
    N. Stoloff, C. Liu, and S. Deevi, Emerging Applications of Intermetallics, Intermetallics, 2000, 8(9), p 1313–1320CrossRefGoogle Scholar
  4. 4.
    K. Hahn and K. Vedula, Room Temperature Tensile Ductility in Polycrystalline B2 NiAl, Scripta Mater., 1989, 23(1), p 7–12CrossRefGoogle Scholar
  5. 5.
    P. Nagpal and I. Baker, The Effect of Grain Size on the Room-Temperature Ductility of NiAl, Scripta Mater., 1990, 24(12), p 2381–2384CrossRefGoogle Scholar
  6. 6.
    J.A. Hawk and D.E. Alman, Abrasive Wear of Intermetallic-Based Alloys and Composites, Mater. Sci. Eng. A, 1997, 239, p 899–906CrossRefGoogle Scholar
  7. 7.
    I. Baker, P. Nagpal, F. Liu, and P. Munroe, The Effect of Grain Size on the Yield Strength of FeAl and NiAl, Acta Mater., 1991, 39(7), p 1637–1644CrossRefGoogle Scholar
  8. 8.
    C. Yust and L. Allard, Wear Characteristics of an Alumina-Silicon Carbide Whisker Composite at Temperatures to 800 °C in Air, Tribol. Trans., 1989, 32(3), p 331–338CrossRefGoogle Scholar
  9. 9.
    P.J. Blau and C.E. Devore, Sliding Behavior of Alumina/Nickel and Alumina/Nickel Aluminide Couples at Room and Elevated Temperature, J. Tribol., 1988, 110(4), p 646–652CrossRefGoogle Scholar
  10. 10.
    P.J. Blau and C.E. Devore, Sliding Friction and Wear Behaviour of Several Nickel Aluminide Alloys Under Dry and Lubricated Conditions, Tribol. Inter., 1990, 23(4), p 226–234CrossRefGoogle Scholar
  11. 11.
    A.M.M. Ibrahim, X.L. Shi, W.Z. Zhai, J. Yao, Z.S. Xu, L. Cheng et al., Tribological Behavior of NiAl-1.5 wt.% Graphene Composite Under Different Velocities, Tribol. Trans., 2014, 57(6), p 1044–1050CrossRefGoogle Scholar
  12. 12.
    A.M.M. Ibrahim, X.L. Shi, A. Zhang, K. Yang, and W.Z. Zhai, Tribological Characteristics of NiAl Matrix Composites with 1.5 wt.% Graphene at Elevated Temperatures: An Experimental and Theoretical Study, Tribol. Trans., 2015, 58(6), p 1076–1083CrossRefGoogle Scholar
  13. 13.
    Y.C. Xiao, X.L. Shi, W.Z. Zhai, K. Yang, and J. Yao, Effect of Temperature on Tribological Properties and Wear Mechanisms of NiAl Matrix Self-Lubricating Composites Containing Graphene Nanoplatelets, Tribol. Trans., 2015, 58(4), p 729–735CrossRefGoogle Scholar
  14. 14.
    A.M.M. Ibrahim, X.L. Shi, W.Z. Zhai, and K. Yang, Improving the Tribological Properties of NiAl Matrix Composites Via Hybrid Lubricants of Silver and Graphene Nano Platelets, RSC Adv., 2015, 5(76), p 61554–61561CrossRefGoogle Scholar
  15. 15.
    S. Zhu, Q. Bi, H. Wu, J. Yang, and W. Liu, NiAl Matrix High-Temperature Self-Lubricating Composite, Tribol. Lett., 2011, 41(3), p 535–540CrossRefGoogle Scholar
  16. 16.
    T. Murakami, J. Ouyang, S. Sasaki, K. Umeda, and Y. Yoneyama, High-Temperature Tribological Properties of Al2O3, Ni-20 Mass.% Cr and NiAl Spark-Plasma-Sintered Composites Containing BaF2–CaF2 Phase, Wear, 2005, 259(1), p 626–633CrossRefGoogle Scholar
  17. 17.
    O. Umanskyi, O. Poliarus, M. Ukrainets, and I. Martsenyuk, Effect of ZrB 2 , CrB 2 and TiB 2 Additives on the Tribological Characteristics of NiAl-Based Gas-Thermal Coatings, Trans Tech Publ, Key Eng. Mater., 2014, p 20–23Google Scholar
  18. 18.
    L. He, Y.F. Tan, X.L. Wang, Q.F. Jing, and X. Hong, Tribological Properties of Laser Cladding TiB2 Particles Reinforced Ni-Base Alloy Composite Coatings on Aluminum Alloy. Rare Met., 2015, 34(11), p 789–796CrossRefGoogle Scholar
  19. 19.
    X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Xu, Q.X. Zhang, and Y. Chen, Influence of Ti3SiC2 Content on Tribological Properties of NiAl Matrix Self-Lubricating Composites, Mater. Des., 2013, 45, p 179–189CrossRefGoogle Scholar
  20. 20.
    X.L. Shi, S. Song, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao et al., Tribological Behavior of Ni3Al Matrix Self-Lubricating Composites Containing WS2, Ag and h-BN Tested from Room Temperature to 800 °C, Mater. Des., 2014, 55, p 75–84CrossRefGoogle Scholar
  21. 21.
    X.L. Shi, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao, S. Song et al., Tribological Behaviors of NiAl Based Self-Lubricating Composites Containing Different Solid Lubricants at Elevated Temperatures, Wear, 2014, 310(1), p 1–11CrossRefGoogle Scholar
  22. 22.
    X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Zhu, Z.S. Xu, Q.X. Zhang et al., Friction and Wear Behavior of NiA-10 wt.% Ti3SiC2 Composites, Wear, 2013, 303(1), p 9–20CrossRefGoogle Scholar
  23. 23.
    X.L. Shi, W.Z. Zhai, Z.S. Xu, M. Wang, J. Yao, S. Song et al., Synergetic Lubricating Effect of MoS2 and Ti3SiC2 on Tribological Properties of NiAl Matrix Self-Lubricating Composites Over a Wide Temperature Range, Mater. Des., 2014, 55, p 93–103CrossRefGoogle Scholar
  24. 24.
    A. Pauschitz, M. Roy, and F. Franek, Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures, Tribol. Int., 2008, 41(7), p 584–602CrossRefGoogle Scholar
  25. 25.
    H. Pasaribu, K. Reuver, D. Schipper, S. Ran, K. Wiratha, A. Winnubst et al., Environmental Effects on Friction and Wear of Dry Sliding Zirconia and Alumina Ceramics Doped with Copper Oxide, Int. J Refract. Met. Hard Mater., 2005, 23, p 386–390CrossRefGoogle Scholar
  26. 26.
    M. Peterson, S. Murray, and J. Florek, Consideration of Lubricants for Temperatures Above 1000°F, ASLE Trans., 1959, 2(2), p 225–234Google Scholar
  27. 27.
    S. Zhu, Q. Bi, M. Niu, J. Yang, and W. Liu, Tribological Behavior of NiAl Matrix Composites with Addition of Oxides at High Temperatures, Wear, 2012, 274, p 423–434CrossRefGoogle Scholar
  28. 28.
    R. Franz and C. Mitterer, Vanadium Containing Self-Adaptive Low-Friction Hard Coatings for High-Temperature Applications: A Review, Surf. Coat. Technol., 2013, 228, p 1–13CrossRefGoogle Scholar
  29. 29.
    N. Fateh, G. Fontalvo, G. Gassner, and C. Mitterer, The Beneficial Effect of High-Temperature Oxidation on the Tribological Behaviour of V and VN Coatings, Tribol. Lett., 2007, 28(1), p 1–7CrossRefGoogle Scholar
  30. 30.
    N. Fateh, G. Fontalvo, and C. Mitterer, Tribological Properties of Reactive Magnetron Sputtered V2O5 and VN–V2O5 Coatings, Tribol. Lett., 2008, 30(1), p 21–26CrossRefGoogle Scholar
  31. 31.
    E. Lugscheider, S. Bärwulf, and C. Barimani, Properties of Tungsten and Vanadium Oxides Deposited by MSIP–PVD Process for Self-Lubricating Applications, Surf. Coat. Technol., 1999, 120, p 458–464CrossRefGoogle Scholar
  32. 32.
    P. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.D. Münz, Calorimetric Evidence for Frictional Self-Adaptation of TiAlN/VN Superlattice Coatings, Surf. Coat. Technol., 2004, 177, p 341–347CrossRefGoogle Scholar
  33. 33.
    A. Voevodin, C. Muratore, and S. Aouadi, Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management: Review, Surf. Coat. Technol., 2014, 257, p 247–265CrossRefGoogle Scholar
  34. 34.
    R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik et al., High-Temperature Low-Friction Properties Of Vanadium-Alloyed AlCrN Coatings, Tribol. Lett., 2006, 23(2), p 101–107CrossRefGoogle Scholar
  35. 35.
    A.M. Cao, J.S. Hu, H.P. Liang, and L.J. Wan, Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed., 2005, 44, p 4391–4395CrossRefGoogle Scholar
  36. 36.
    T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li et al., Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, Photoconductive Properties, Adv. Mater., 2010, 22, p 2547–2552CrossRefGoogle Scholar
  37. 37.
    ASTM B962-08, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International, West Conshohocken, PA, 2008Google Scholar
  38. 38.
    ASTM E92-82, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2003Google Scholar
  39. 39.
    ASTM G99-95, Standard Test Method for Wear Testing with a Pin on Disk Apparatus, ASTM International, West Conshohocken, PA, 1995Google Scholar
  40. 40.
    V. Merlin and N. Eustathopoulos, Wetting and Adhesion of Ni–Al Alloys on α-Al2O3 Single Crystals, J. Mater. Sci., 1995, 30(14), p 3619–3624CrossRefGoogle Scholar
  41. 41.
    W. Zhang, J. Smith, and A. Evans, The Connection Between Ab Initio Calculations and Interface Adhesion Measurements on Metal/Oxide Systems: Ni/Al2O3 and Cu/Al2O3, Acta Mater., 2002, 50(15), p 3803–3816CrossRefGoogle Scholar
  42. 42.
    X.L. Shi, W.Z. Zhai, M. Wang, Z.S. Xu, J. Yao, S.Y. Song, A.Q.U. Din, and Q.X. Zhang, Tribological Performance of Ni3Al-15 wt.% Ti3SiC2 Composites Against Al2O3, Si3N4 and WC-6Co from 25 to 800 °C, Wear, 2013, 303, p 244–254CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Yuchun Huang
    • 1
  • Ahmed Mohamed Mahmoud Ibrahim
    • 2
  • Xiaoliang Shi
    • 1
    Email author
  • Amr Rady Radwan
    • 3
  • Wenzheng Zhai
    • 1
  • Kang Yang
    • 1
  • Bing Xue
    • 4
  1. 1.School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Production Engineering and Design Department, Faculty of EngineeringMinia UniversityEl MiniaEgypt
  3. 3.School of Material Science and EngineeringWuhanChina
  4. 4.Department of Mechanical and Electronic EngineeringYellow River Conservancy Technical InstituteKaifengChina

Personalised recommendations