Advertisement

Journal of Materials Engineering and Performance

, Volume 25, Issue 11, pp 4680–4685 | Cite as

Mechanism for Corrosion Prevention by a Mechanical Plating of Uniform Zinc-Iron Alloy

  • Naoya Kasai
  • Yoshihiko Kaku
  • Shinji Okazaki
  • Kuninori Hirai
Article
  • 230 Downloads

Abstract

In situ electrochemical monitoring with a three-electrode cell was applied to investigate the anti-corrosion properties of a mechanical zinc-iron alloy plating. Several electron probe microanalyses were also conducted to identify the chemical elements in the plating. The results indicated the formation of a Zn-Fe intermetallic compound, which allowed a mechanism for corrosion prevention to be proposed. In the proposed mechanism, Zn(OH)2 plays a significant role in the corrosion prevention of steel alloys.

Keywords

anti-corrosion mechanism corrosion electron probe microanalysis inorganic coatings mechanical plating zinc-iron alloy 

Notes

Acknowledgments

This study was financially supported by the Yokohama National University and Nippon C&Z Co., Ltd. The authors would like to thank Mr. Shiraga and the Instrumental Analysis Center of Yokohama National University for conducting the x-ray diffraction analysis. The authors would also like to thank Mr. Ishizuka for useful discussion and comments.

References

  1. 1.
    G.A. El-Mahdy, A. Nishikata, and T. Tsuru, Electrochemical Corrosion Monitoring of Galvanized Steel Under Cyclic Wet–Dry Conditions, Corros. Sci., 2000, 42(1), p 183–194CrossRefGoogle Scholar
  2. 2.
    A.P. Yadav, A. Nishikata, and T. Tsuru, Degradation Mechanism of Galvanized Steel in Wet–Dry Cyclic Environment Containing Chloride Ions, Corros. Sci., 2004, 46(2), p 361–376CrossRefGoogle Scholar
  3. 3.
    A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–Dry Conditions—Influence of Time of Wetness, Corros. Sci., 2004, 46(1), p 169–181CrossRefGoogle Scholar
  4. 4.
    H. Marchebois, S. Touzain, S. Joiret, J. Bernard, and C. Savall, Zinc-Rich Powder Coatings Corrosion in Sea Water: Influence of Conductive Pigments, Prog. Org. Coat., 2002, 45(4), p 415–421CrossRefGoogle Scholar
  5. 5.
    H. Marchebois, S. Joiret, C. Savall, J. Bernard, and S. Touzain, Characterization of Zinc-Rich Powder Coatings by EIS and Raman Spectroscopy, Surf. Coat. Technol., 2002, 157(2–3), p 151–161CrossRefGoogle Scholar
  6. 6.
    H. Marchebois, C. Savall, J. Bernard, and S. Touzain, Electrochemical Behavior of Zinc-Rich Powder Coatings in Artificial Sea Water, Electrochim. Acta, 2004, 49(17), p 2945–2954CrossRefGoogle Scholar
  7. 7.
    H. Marchebois, M. Keddam, C. Savall, J. Bernard, and S. Touzain, Zinc-Rich Powder Coatings Characterisation in Artificial Sea Water: EIS Analysis of the Galvanic Action, Electrochim. Acta, 2004, 49(11), p 1719–1729CrossRefGoogle Scholar
  8. 8.
    S. Yogesha and A.C. Hegde, Optimization of Deposition Conditions for Development of High Corrosion Resistant Zn-Fe Multilayer Coatings, J. Mater. Process. Technol., 2011, 211(8), p 1409–1415CrossRefGoogle Scholar
  9. 9.
    N. Parkansky, R.L. Boxman, S. Goldsmith, and Y. Rosenberg, Corrosion Resistance of Zn Coatings Produced by Air Arc Deposition, Surf. Coat. Technol., 1995, 76–77(1), p 352–357CrossRefGoogle Scholar
  10. 10.
    K. Venkatakrishna and A.C. Hegde, Composition Modulated Multilayer Zn-Fe Alloy Coatings on Mild Steel for Better Corrosion Resistance, Mater. Manuf. Process., 2011, 26(1), p 29–36CrossRefGoogle Scholar
  11. 11.
    M. Kalantary, G. Wilcox, and D. Gabe, Alternate Layers of Zinc and Nickel Electrodeposited to Protect Steel, Br. Corros. J., 1998, 33(3), p 197–201CrossRefGoogle Scholar
  12. 12.
    J-y Fei and G.D. Wilcox, Electrodeposition of Zinc-Nickel Compositionally Modulated Multilayer Coatings and Their Corrosion Behaviours, Surf. Coat. Technol., 2006, 200(11), p 3533–3539CrossRefGoogle Scholar
  13. 13.
    J-y Fei, G-z Liang, W-l Xin, and W-k Wang, Surface Modification with Zinc and Zn-Ni Alloy Compositionally Modulated Multilayer Coatings, J. Iron Steel Res. Int., 2006, 13(4), p 61–67CrossRefGoogle Scholar
  14. 14.
    F. Jingyin, L. Guozheng, X. Wenli, and L. Jianghong, Corrosion Performance of Zinc and Zinc-Cobalt Alloy Compositionally Modulated Multilayer (CMM) Coatings, J. Wuhan Univ. Technol. Mater Sci. Ed, 2006, 21(4), p 40–44CrossRefGoogle Scholar
  15. 15.
    V. Thangaraj, N. Eliaz, and A.C. Hegde, Corrosion Behavior of Composition Modulated Multilayer Zn-Co Electrodeposits Produced Using a Single-Bath Technique, J. Appl. Electrochem., 2008, 39(3), p 339–345CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Naoya Kasai
    • 1
  • Yoshihiko Kaku
    • 1
  • Shinji Okazaki
    • 1
  • Kuninori Hirai
    • 2
  1. 1.Yokohama National UniversityYokohamaJapan
  2. 2.Nippon C&Z Co., LTDYokohamaJapan

Personalised recommendations