Journal of Materials Engineering and Performance

, Volume 25, Issue 9, pp 4046–4058 | Cite as

Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM

  • Sunkulp Goel
  • Nikhil Kumar
  • Devasri Fuloria
  • R. Jayaganthan
  • I. V. Singh
  • D. Srivastava
  • G. K. Dey
  • N. Saibaba
Article

Abstract

Fracture toughness and mechanical properties of the zircaloy-2 processed by rolling at different temperatures have been investigated, and simulations have been performed using extended finite element method (XFEM). The solutionized alloy was rolled at different temperatures for different thickness reductions (25–85%). Fracture toughness has been investigated by compact tension test. The improved fracture toughness of the rolled zircaloy-2 samples is due to high dislocation density. SEM image of the fractured surface shows the reduction in dimple sizes with the increase in dislocation density due to the formation of microvoids as a result of severe strain induced during rolling. Compact tension test, edge crack, center crack and three-point bend specimen simulations have been performed by XFEM. In XFEM, the cracks are not a part of finite element mesh and are modeled by adding enrichment function in the standard finite element displacement approximation. The XFEM results obtained for compact tension test have been found to be in good agreement with the experiment.

Keywords

cryo-rolling fracture toughness microstructure XFEM 

References

  1. 1.
    K. Edsinger, J.H. Davies, and R.B. Adamson, Degraded Fuel Cladding Fractography and Fracture Behaviour, Proceedings of the 12th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1354, G.P. Sabol and G.D. Moan, Ed., American Society for Testing and Materials, West Conshohocken, PA, 2000, p 316–339 Google Scholar
  2. 2.
    J. Bertsch and W. Hoffelner, Crack Resistance Curve Determination of Tube Cladding Material, J. Nucl. Mater., 2006, 352, p 116–125CrossRefGoogle Scholar
  3. 3.
    V. Grigoriev, B. Josefsson, and B. Rosborg, Fracture Toughness of Zircaloy Cladding Tubes, Proceedings of the 11th International Symposium on Zirconium in Nuclear Industry, ASTM STP 1295, E.R. Bradely, and G.P. Sabol, Ed., 1996, p 431–447Google Scholar
  4. 4.
    M. Li, D. Guo, T. Ma, G. Zhang, Y. Shi, and X. Zhang, High Fracture Toughness in a Hierarchical Nanostructured Zirconium, Mater. Sci. Eng. A, 2014, 606, p 330–333CrossRefGoogle Scholar
  5. 5.
    T. Shimokawa, M. Tanaka, K. Kinoshita, and K. Higashida, Roles of Grain Boundaries in Improving Fracture Toughness of Ultrafine-Grained Metals, Phys. Rev. B, 2011, 83, p 214113CrossRefGoogle Scholar
  6. 6.
    L. Zhu and Z. Lu, Modelling the Plastic Deformation of Nanostructured Metals with Bimodal Grain Size Distribution, Int. J. Plast., 2012, 30–31, p 166–184CrossRefGoogle Scholar
  7. 7.
    A.D. Nurse and E.A. Patterson, A Photoelastic Technique to Predict The Direction of Edge Crack Extension Using Blunt Cracks, Int. J. Mech. Sci., 1990, 32, p 253–264CrossRefGoogle Scholar
  8. 8.
    S.K. Maiti and D.P. Patil, Detection of Multiple Cracks Using Frequency Measurements, Eng. Fract. Mech., 2003, 70, p 1553–1572CrossRefGoogle Scholar
  9. 9.
    A. Vadiraj and M. Kamaraj, Damage Characterization of Unmodified and Surface Modified Medical Grade Titanium Alloys Under Fretting Fatigue Condition, Mater. Sci. Eng. A, 2006, 416, p 253–260CrossRefGoogle Scholar
  10. 10.
    A. Vadiraj and M. Kamaraj, Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys, Surf. Coat. Technol., 2006, 200, p 4538–4542CrossRefGoogle Scholar
  11. 11.
    A.K. Bind, R.N. Singh, S. Sunil, and H.K. Khandelwal, Comparison of J-Parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique, Eng. Fract. Mech., 2013, 105, p 200–210CrossRefGoogle Scholar
  12. 12.
    S.P. Singh, S. Bhattacharya, and D.K. Sehgal, Evaluation of High Temperature Mechanical Strength of Cr-Mo Grade Steel Through Small Punch Test Technique, Eng. Fail. Anal., 2014, 39, p 207–220CrossRefGoogle Scholar
  13. 13.
    A. Choubey, D.K. Sehgal, and N. Tandon, Finite Element Analysis of Vessels to Study Changes in Natural Frequencies due to Cracks, Int. J. Press. Vessels Pip., 2006, 83, p 181–187CrossRefGoogle Scholar
  14. 14.
    S. Zhong and S.O. Oyadiji, Crack Detection in Simply Supported Beams Without Baseline Modal Parameters by Stationary Wavelet Transform, Mech. Syst. Signal Process., 2007, 21, p 1853–1884CrossRefGoogle Scholar
  15. 15.
    K. Chung, F. Barlat, J.W. Yoon, O. Richmond, J.C. Brem, and D.J. Lege, Yield and Strain Rate Potentials for Aluminum Alloy Sheet Forming Design, Met. Mater., 1998, 4, p 931–938CrossRefGoogle Scholar
  16. 16.
    J.W. Yoon, F. Barlat, and R.E. Dick, Plane Stress Yield Function for Aluminum Alloy Sheet—Part II: FE Formulation and Its Implementation, Int. J. Plast., 2004, 20, p 495–522CrossRefGoogle Scholar
  17. 17.
    M.K. Samal, G. Sanyal, and J.K. Chakravartty, An Experimental and Numerical Study of the Fracture Behaviour of Tubular Specimens in a Pin-Loading-Tension Set-Up, J Mech Eng Sci, 2010, 224, p 1–12CrossRefGoogle Scholar
  18. 18.
    G. Sanyal and M.K. Samal, Fracture Behavior of Thin-Walled Zircaloy Fuel Clad Tubes of Indian Pressurized Heavy Water Reactor, Int. J. Fract., 2012, 173, p 175–188CrossRefGoogle Scholar
  19. 19.
    T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRefGoogle Scholar
  20. 20.
    N. Moës, J. Dolbow, and T. Belytschko, A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer. Methods Eng., 1999, 46, p 131–150CrossRefGoogle Scholar
  21. 21.
    J.E. Dolbow, “An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics”. PhD dissertation, Theoretical and Applied Mechanics, Northwestern University, USA, 1999Google Scholar
  22. 22.
    N. Sukumar, D.J. Srolovitz, T.J. Baker, and J.H. Prevost, Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method, Int. J. Numer. Methods Eng., 2003, 56, p 2015–2037CrossRefGoogle Scholar
  23. 23.
    P. Dumstorff and G. Meschke, Finite Element Modelling of Cracks Based on the Partition of Unity Method, Proc. Appl. Math. Mech., 2003, 2, p 226–227CrossRefGoogle Scholar
  24. 24.
    B. Patzak and M. Jirásek, Process Zone Resolution by Extended Finite Elements, Eng. Fract. Mech., 2003, 70, p 957–977CrossRefGoogle Scholar
  25. 25.
    K. Sharma, T.Q. Bui, Ch Zhang, and R.R. Bhargava, Analysis of a Subinterface Crack in Piezoelectric Bimaterials with the Extended Finite Element Method, Eng. Fract. Mech., 2013, 104, p 114–139CrossRefGoogle Scholar
  26. 26.
    P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, and C.W. Lim, Transient Thermal Shock Fracture Analysis of Functionally Graded Piezoelectric Materials by the Extended Finite Element Method, Int. J. Solids Struct., 2014, 51, p 2167–2182CrossRefGoogle Scholar
  27. 27.
    H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J.-H. Song, J. Muthu, G. Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, and T. Rabczuk, Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials, Eng. Fract. Mech., 2012, 92, p 19–31CrossRefGoogle Scholar
  28. 28.
    H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, and T. Rabczuk, Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture, Int. J. Multiscale Comput. Eng., 2013, 11, p 527–541CrossRefGoogle Scholar
  29. 29.
    S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Behaviour and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Processed by Cryorolling, Mater. Sci. Eng. A, 2014, 603, p 23–29CrossRefGoogle Scholar
  30. 30.
    S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and Microstructural Characterizations of Ultrafine Grained Zircaloy-2 Produced by Room Temperature Rolling, Mater. Des., 2014, 55, p 612–618CrossRefGoogle Scholar
  31. 31.
    S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling, J. Mater. Eng. Perform., 2014, 24, p 609–617CrossRefGoogle Scholar
  32. 32.
    S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Texture Evolution and Ultrafine Grain Formation in Cross Cryo Rolled Zircaloy-2, Acta Metall. Sin., 2015, 28, p 837–846CrossRefGoogle Scholar
  33. 33.
    S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, S.K. Jha, and N. Saibaba, Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures, J. Mater. Eng. Perform., 2014, 24, p 618–625CrossRefGoogle Scholar
  34. 34.
    S. Goel, K. Gaurav, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Experimental Evaluation of Mechanical Properties and Fracture-Fatigue Simulation of Cryo- and Room-Temperature-Rolled Zircaloy-2, Int. J. Microstruct. Mater. Prop., 2014, 9, p 120–135Google Scholar
  35. 35.
    D. Fuloria, S. Goel, R. Jayaganthan, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Properties and Microstructural Evolution of Ultrafine Grained Zircaloy-4 Processed Through Multiaxial Forging at Cryogenic Temperature, Trans. Nonferr. Mater. Soc. China, 2014, 25, p 2221–2229CrossRefGoogle Scholar
  36. 36.
    D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr Via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRefGoogle Scholar
  37. 37.
    D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, and X. Zhang, Effect of Strain Rate on Microstructure Evolutions and Mechanical Properties of Cryorolled Zr Upon Annealing, Mater. Lett., 2012, 66, p 305–307CrossRefGoogle Scholar
  38. 38.
    D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High Strength and Ductility in Multimodal-Structured Zr, Mater. Des., 2012, 34, p 275–278CrossRefGoogle Scholar
  39. 39.
    D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, and X. Zhang, An Extraordinary Enhancement of Strain Hardening in Fine-Grained Zirconium, Mater. Sci. Eng. A, 2014, 591, p 167–172CrossRefGoogle Scholar
  40. 40.
    D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructure Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51Google Scholar
  41. 41.
    J. Chessa, P. Smolinski, and T. Belytschko, The Extended Finite Element Method (XFEM) for Solidification Problems, Int. J. Numer. Methods Eng., 2002, 53, p 1959–1977CrossRefGoogle Scholar
  42. 42.
    A. Gravouil, N. Moës, and T. Belytschko, Non-planar 3D Crack Growth by the Extended Finite Element and Level Sets—Part II: Level Set Update, Int. J. Numer. Methods Eng., 2002, 53, p 2569–2586CrossRefGoogle Scholar
  43. 43.
    W.T. Becker and S. Lampman, Fracture Appearance and Mechanisms of Deformation and Fracture, ASM International, Materials Park, 2002Google Scholar
  44. 44.
  45. 45.
    L.U. Zizi and L.I.U. Yongming, Concurrent Fatigue Crack Growth Simulation Using Extended Finite Element Method, Front. Archit. Civ. Eng. China, 2016, 4, p 339–347Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Sunkulp Goel
    • 1
  • Nikhil Kumar
    • 1
  • Devasri Fuloria
    • 1
  • R. Jayaganthan
    • 1
    • 2
  • I. V. Singh
    • 3
  • D. Srivastava
    • 4
  • G. K. Dey
    • 4
  • N. Saibaba
    • 5
  1. 1.Department of Metallurgical and Materials Engineering, Centre of NanotechnologyIIT RoorkeeRoorkeeIndia
  2. 2.Department of Engineering DesignIndian Institute of Technology MadrasChennaiIndia
  3. 3.Department of Mechanical and Industrial EngineeringIIT RoorkeeRoorkeeIndia
  4. 4.Materials Science DivisionBhabha Atomic Research CenterMumbaiIndia
  5. 5.Nuclear Fuel Complex LimitedHyderabadIndia

Personalised recommendations