Journal of Materials Engineering and Performance

, Volume 25, Issue 9, pp 3985–3992 | Cite as

A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

  • Manish Kumar
  • I. V. Singh
  • B. K. Mishra
  • S. Ahmad
  • A. Venugopal Rao
  • Vikas Kumar


In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.


conventional theta projection model (CTPM) creep modified theta projection model (MTPM) 


  1. 1.
    F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill Book Company Inc, New York, 1929Google Scholar
  2. 2.
    Y.N. Robotnov, Some problems of the theory of creep, NACA., TM 1353, 1953Google Scholar
  3. 3.
    A. Graham and K.F.A. Walles, Relations between long and short time properties of commercial alloy, J. Iron Steel Inst., 1955, 179, p 105–120Google Scholar
  4. 4.
    F. Garofalo, Fundamental of Creep and Creep Rapture in Metals, MacMillan Publisher, New York, 1965Google Scholar
  5. 5.
    L.M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986CrossRefGoogle Scholar
  6. 6.
    R.W. Evans and B. Wilshire, Creep of Metals, Institute of Metals, London, 1985Google Scholar
  7. 7.
    K. Maruyama, C. Tanaka, and H. Oikawa, Long-term creep curve prediction based on the modified θ projection concept, J. Press. Vessel Technol., 1990, 112, p 92–97CrossRefGoogle Scholar
  8. 8.
    M. Evans, Sensitivity of the theta projection technique to the functional form of the theta interpolation/extrapolation function, J. Mater. Sci., 2002, 37, p 2871–2884CrossRefGoogle Scholar
  9. 9.
    S.J. Williams, An automatic technique for the analysis of stress rupture data, Report MFR30017, Rolls-Royce, Derby, UK, 1993Google Scholar
  10. 10.
    M.E. Kassner and M.T. Pérez-Prado, Fundamentals of Creep in Metals and Alloys, Elsevier Ltd, Amsterdam, 2004Google Scholar
  11. 11.
    M.E. Kassner, Recent developments in understanding the mechanism of five-power-law creep, Mater. Sci. Eng. A, 2005, 410–411, p 20–23CrossRefGoogle Scholar
  12. 12.
    B. Wilshire and P.J. Scharning, Creep and creep fracture of commercial aluminium alloys, J. Mater. Sci., 2008, 43, p 3992–4000CrossRefGoogle Scholar
  13. 13.
    S.J. Williams, M.R. Bache, and B. Wilshire, 25 year perspective recent developments in analysis of high temperature creep and creep fracture behavior, Mater. Sci. Technol., 2010, 26(11), p 1332–1337CrossRefGoogle Scholar
  14. 14.
    ASTM E8M-04, Standard test methods for tension testing of metallic materials (metric), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA, 2004Google Scholar
  15. 15.
    M. Law, W. Payten, and K. Sonwden, Creep modelling welded joints using the theta projection concept and finite elements analysis, J. Press. Vessel Technol., 2000, 122, p 22–26CrossRefGoogle Scholar
  16. 16.
    Y.C. Lin, Y.C. Xia, M.S. Chen, Y.Q. Jiang, and L.T. Li, Modelling of creep behavior of 2024-T3 Al alloy, Comput. Mater. Sci., 2013, 67, p 243–248CrossRefGoogle Scholar
  17. 17.
    ASTM E139-06, Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA, 2006Google Scholar
  18. 18.
    Y.Q. Jiang, Y.C. Lin, C. Phaniraj, Y.C. Xia, and H.M. Zhou, Creep and creep rupture behavior of 2124-T851 aluminum alloy, High Temp. Mater. Processes (London), 2013, 32(6), p 533–540Google Scholar
  19. 19.
    Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen, High-temperature creep behavior of Al-Cu-Mg alloy, Mater. Sci. Eng. A, 2012, 550, p 125–130CrossRefGoogle Scholar
  20. 20.
    Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu, A new creep constitutive model for 7075 aluminum alloy under elevated temperatures, J. Mater. Eng. Perform., 2014, 23, p 4350–4357CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Manish Kumar
    • 1
  • I. V. Singh
    • 1
  • B. K. Mishra
    • 1
  • S. Ahmad
    • 2
  • A. Venugopal Rao
    • 2
  • Vikas Kumar
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Defence Metallurgical Research LaboratoryDRDOHyderabadIndia

Personalised recommendations