Journal of Materials Engineering and Performance

, Volume 25, Issue 8, pp 3538–3545 | Cite as

Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

  • Ashutosh Sharma
  • Myung Hwan Roh
  • Jae Pil Jung


The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.


aluminum automotive and transportation brazing composites joining metallic matrix nanomaterials thermal analysis 



This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) financial resource grant from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20142020104380).


  1. 1.
    B. Altshuller, Aluminum Brazing Handbook, 4th ed., The Aluminum Association Inc, Washington, 1990Google Scholar
  2. 2.
    H.-C. Yoo and H.-T. Kim, ‘Recent Technological Tendency of Joining For Light Aluminium Alloy, JWJ, 2011, 29(3), p 260–269 (in Korean)Google Scholar
  3. 3.
    I.J. Polmear, Light Alloys from Traditional Alloys to Nanocrystals, 4th ed., Elsevier-Butterworth Heinemann, Oxford, 2006Google Scholar
  4. 4.
    A. Sharma, Y.S. Shin, and J.P. Jung, Influence of Various Additional Elements in Al Based Filler Alloys For Automotive and Brazing Industry, JWJ, 2015, 33, p 1–8Google Scholar
  5. 5.
    A. Sharma and S. Das, Study of Age Hardening Behavior of Al–4.5wt%Cu/zircon Sand Composite in Different Quenching Media—A Comparative Study, Mater. Des., 2009, 30(9), p 3900–3903CrossRefGoogle Scholar
  6. 6.
    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu, Eutectic Modification And Microstructure Development in Al–Si Alloys, Mater. Sci. Eng. A, 2005, 413–414, p 243–248CrossRefGoogle Scholar
  7. 7.
    T.H. Chung, M.S. Yeh, L.C. Tsao, T.C. Tsai, and C.S. Wu, Development of A Low Melting Point Filler Metal For Brazing Aluminum Alloys, Met. Mat. Trans. A, 2000, 31A, p 2239–2245CrossRefGoogle Scholar
  8. 8.
    S.Y. Chang, L.C. Tsao, T.Y. Li, and T.H. Chuang, Joining 6061 Aluminum Alloy With Al-Si-Cu Filler Metals, J. Alloy. Compd., 2009, 488, p 174–180CrossRefGoogle Scholar
  9. 9.
    G. Humpston, S.P.S. Sangha, and D.M. Jacobson, New Filler Metals and Process for Fluxless Brazing of Aluminium Engineering Alloys, Mater. Sci. Technol., 1995, 11, p 1161–1168CrossRefGoogle Scholar
  10. 10.
    L.C. Tsao, W.P. Weng, M.D. Cheng, C.W. Tsao, and T.H. Chuang, Brazeability of A 3003 Al Alloy With Al-Si-Cu Based Filler Metals, J. Mater. Eng. Perform., 2002, 11, p 360–364CrossRefGoogle Scholar
  11. 11.
    K. Suzuki, M. Kagayama, and Y. Takeuchi, Eutectic Phase Equilibrium of Al-Si-Zn System and Its Applicability for Lower Temperature Brazing, J. Jpn. Inst. Light Met., 1993, 43, p 533–538 (in Japanese)CrossRefGoogle Scholar
  12. 12.
    M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, and K. Nisancioglu, Intergranular Corrosion of Copper-Containing AA6xxx AlMgSi Aluminium Alloys, J. Electrochem. Soc., 2008, 155(11), p C550–C556CrossRefGoogle Scholar
  13. 13.
    S.G. Shabestari and H. Moemeni, Effect of Copper and Solidification Conditions On The Microstructure and Mechanical Properties of Al-Si-Mg Alloys, J. Mat. Process. Technol., 2004, 153–154, p 193–198CrossRefGoogle Scholar
  14. 14.
    H. Yi and D. Zhang, Morphologies of Si Phase and La-Rich Phase in As-Cast Hypereutectic Al-Si-xLa Alloys, Mater. Lett., 2003, 57, p 2523–2529CrossRefGoogle Scholar
  15. 15.
    G. Rai and D.B. Karunakar, A New Method for Melt Refinement of Al Cast Alloys in Sand Casting Process, Int. J. Mech Eng. Rob. Res., 2014, 1, p 136–149Google Scholar
  16. 16.
    F. Stadler, H. Antrekowitschn, W. Fragner, H. Kaufmann, E.R. Pinatel, and P.J. Uggowitzer, The Effect of Main Alloying Elements On the Physical Properties Of Al–Si Foundry Alloys, Mat. Sci. Eng. A, 2013, 560, p 481–491CrossRefGoogle Scholar
  17. 17.
    Y. Birol, A Novel Al–Ti–B Alloy for Grain Refining Al–Si Foundry Alloys, J. Alloy. Compd., 2009, 486, p 219–222CrossRefGoogle Scholar
  18. 18.
    T. N. Ware, A. K. Dahle, S. Charles, and M. J. Couper, Effect of Sr, Na, Ca & P On The Castability of Foundry Alloy A356.2, ASM Materials Solutions 2002 Conference & Exposition, 2nd International Aluminium Casting Technology Symposium, Columbus, Ohio, USA, October 2002.Google Scholar
  19. 19.
    B.N. Sarada, P.L. Srinivasamurthy, and Swetha, Microstructural Characteristics of Sr and Na Modified Al-Mg-Si Alloy, Int. J. Innov. Res. Sci. Eng. Tech., 2013, 2(8), p 3975–3983Google Scholar
  20. 20.
    Z. Chen and R. Zhang, Effect of Strontium on Primary Dendrite and Eutectic Temperature of A357 Aluminum Alloy, China Foundry, 2010, 7(2), p 149–152Google Scholar
  21. 21.
    D.H. Xiao, J.N. Wang, D.Y. Ding, and H.L. Yang, Effect of Rare Earth Ce Addition On The Microstructure And Mechanical Properties of An Al–Cu–Mg–Ag Alloy, J. Alloy. Compd., 2003, 352, p 84–88CrossRefGoogle Scholar
  22. 22.
    X.M. Zhang, W.T. Wang, B. Liu, M.A. Chen, Y. Liu, Z.G. Gao, L.Y. Ye, and Y.Z. Jia, Effect of Nd Addition On Microstructures And Heat Resisting Properties of 2519 Aluminum Alloy, Chin. J. Nonferr. Metals, 2009, 19(1), p 15–20 (in Chinese)Google Scholar
  23. 23.
    Lu Tao, Ye Pan, Wu Ji-li, Shi-wen Tao, and Yu Chen, Effects of La Addition On The Microstructure And Tensile Properties of Al-Si-Cu-Mg Casting Alloys, Int. J. Min. Met. Mater., 2015, 22(4), p 405–410CrossRefGoogle Scholar
  24. 24.
    H. Choi, H. Konishi, and X. Li, Al2O3 Nanoparticles Induced Simultaneous Refinement and Modification of Primary and Eutectic Si Particles in Hypereutectic Al–20Si Alloy, Mat. Sci. Eng. A, 2012, 541, p 159–165CrossRefGoogle Scholar
  25. 25.
    H. Choi and Xiaochun Li, ‘Refinement of Primary Si and Modification Of Eutectic Si for Enhanced Ductility of Hypereutectic Al-20Si-4.5Cu Alloy with Addition of Al2O3 Nanoparticles, J. Mater. Sci., 2012, 47, p 3096–3102CrossRefGoogle Scholar
  26. 26.
    A. Sharma, D.U. Lim, and J.P. Jung, Microstructure and Brazeability of SiC Nanoparticles Reinforced Al-9Si-20Cu Produced by Induction Melting, Mat. Sci. Technol., 2016. doi: 10.1179/1743284715Y.0000000138 Google Scholar
  27. 27.
    I.S. El-Mahallawi, A.Y. Shash, and A.E. Amer, Nanoreinforced Cast Al-Si Alloys with Al2O3, TiO2 and ZrO2 Nanoparticles, Metals, 2012, 5, p 802–821CrossRefGoogle Scholar
  28. 28.
    A.R. Kennedy, The Microstructure and Mechanical Properties of Al-Si-B4C Matal Matrix Composites, J. Mater. Sci., 2002, 37, p 317–323CrossRefGoogle Scholar
  29. 29.
    N. Claussen, P. Beyer, R. Janssen, M. May, T. Selchert, J.F. Yang, T. Ohji, S. Kanzaki, and A. Yamakawa, Squeeze Cast β-Si3N4-Al Composites, Adv. Eng. Mater., 2002, 4, p 117–119CrossRefGoogle Scholar
  30. 30.
    O. Carvalho, M. Buciumeanu, D. Soares, F.S. Silva, and G. Miranda, Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite, J. Mater. Eng. Perform., 2015, 24, p 2535–2545CrossRefGoogle Scholar
  31. 31.
    L. Zhao, H. Lu, and Z. Gao, Microstructure and Mechanical Properties of Al/Graphene Composite Produced by High-Pressure Torsion, Adv. Eng. Mater., 2015, 17, p 976–981CrossRefGoogle Scholar
  32. 32.
    T. Skrzekuta, A. Kulaa, L. Blaza, G. Wlocha, and M. Sugamata, High-Strength and Thermally Stable Al-CeO2 Composite Produced by Means of Mechanical Alloying, Int. J. Mater. Res., 2014, 105, p 282–287CrossRefGoogle Scholar
  33. 33.
    A. Sharma, B.G. Baek, and J.P. Jung, Influence of La2O3 Nanoparticle Additions on Microstructure, Wetting, and Tensile Characteristics of Sn-Ag-Cu Alloy, Mater. Des., 2015, 87, p 370–379Google Scholar
  34. 34.
    Japanese Industrial Standards, JIS Z-3197, 2012.Google Scholar
  35. 35.
    Methods For Tension and Shear Tests For Brazed Joint, JIS-Z 3192, 1988.Google Scholar
  36. 36.
    S.Y. Chang, L.C. Tsao, T.Y. Li, and T.H. Chuang, Joining 6061 Aluminum Alloy with Al-Si-Cu Filler Metals, J. Alloy. Compd., 2009, 488, p 174–180CrossRefGoogle Scholar
  37. 37.
    H. Choi, M. Jones, H. Konishi, and X. Li, Effect of Combined Addition of Cu and Aluminum Oxide Nanoparticles on Mechanical Properties and Microstructure of Al-7Si-0.3Mg Alloy, Metall. Mater. Trans. A, 2012, 43A, p 738–746CrossRefGoogle Scholar
  38. 38.
    A. Sharma, S. Bhattacharya, S. Das, and K. Das, Fabrication of Sn-Ag/CeO2 Electro-Composite Solder by Pulse Electrodeposition, Metall. Mater. Trans. A, 2013, 44A, p 5587–5601CrossRefGoogle Scholar
  39. 39.
    P. Liu, P. Yao, and J. Liu, Effect of SiC Nanoparticle Additions on Microstructure and Microhardness of Sn-Ag-Cu Solder Alloy, J. Electron. Mater., 2008, 37, p 874–879CrossRefGoogle Scholar
  40. 40.
    H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, and J.P. Jung, Effect of Aluminium Additions on Wettability and Intermetallic Compound (IMC) Growth Of Lead Free Sn-2wt. %Ag-5wt. %Bi Soldered Joints, Electron. Mater. Lett., 2014, 10, p 997–1004CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Ashutosh Sharma
    • 1
  • Myung Hwan Roh
    • 1
  • Jae Pil Jung
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulSouth Korea

Personalised recommendations