Journal of Materials Engineering and Performance

, Volume 25, Issue 8, pp 3285–3290 | Cite as

Continuous Modeling of Calcium Transport Through Biological Membranes

  • J. J. Jasielec
  • R. FilipekEmail author
  • K. Szyszkiewicz
  • T. Sokalski
  • A. Lewenstam


In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).


biological membranes membrane potential mitochondrial membrane nernst-planck-poisson model 



This work has been financed by the AGH Grant No. The authors would like to thank Professor Krzysztof Dołowy for inspiring this work and his valuable comments pertaining the simulations.


  1. 1.
    J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors, Chem. Rev., 2008, 108(2), p 329–351CrossRefGoogle Scholar
  2. 2.
    K. Krabbenhøft and J. Krabbenhøft, Application of the Poisson–Nernst–Planck Equations to the Migration Test, Cem. Concr. Res., 2008, 38, p 77–88CrossRefGoogle Scholar
  3. 3.
    B. Roux, The Membrane Potential and Its Representation by a Constant Electric Field in Computer Simulations, Biophys. J., 2008, 95, p 4205–4216CrossRefGoogle Scholar
  4. 4.
    C. Kutzner, H. Grubmuller, B.L. de Groot, and U. Zachariae, Computational Electrophysiology: The Molecular Dynamics of Ion Channel Permeation and Selectivity in Atomistic Detail, Biophys. J., 2011, 101, p 809–817CrossRefGoogle Scholar
  5. 5.
    M. Jensen, W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M.P. Eastwood, R.O. Dror, and D.E. Shaw, Principles of Conduction and Hydrophobic Gating in K+ Channels, Proc. Natl. Acad. Sci. USA, 2010, 107, p 5833–5838CrossRefGoogle Scholar
  6. 6.
    A. Bidon-Chanal, E.-M. Krammer, D. Blot, E. Pebay-Peyroula, C. Chipot, S. Ravaud, and F. Dehez, How do Membrane Transporters Sense pH? The Case of the Mitochondrial ADP-ATP Carrier, J. Phys. Chem. Lett., 2013, 4, p 3787–3791CrossRefGoogle Scholar
  7. 7.
    B. Roux, T. Allen, S. Berneche, and W. Im, Theoretical and Computational Models of Biological Ion Channels, Q. Rev. Biophys., 2004, 37(1), p 15–103CrossRefGoogle Scholar
  8. 8.
    E.-M. Krammer, F. Homblé, and M. Prévost, Molecular origin of VDAC Selectivity Towards Inorganic Ions: A Combined Molecular and Brownian Dynamics Study, Biochem. Biophys. Acta, 2013, 1828, p 1284–1292CrossRefGoogle Scholar
  9. 9.
    B. Corry, S. Kuyucak, and S.-H. Ghung, Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels, Biophys. J., 2003, 84, p 3594–3606CrossRefGoogle Scholar
  10. 10.
    R.S. Eisenberg, From Structure to Function in Open Ionic Channels, J. Membr. Biol., 1999, 171(1), p 1–24CrossRefGoogle Scholar
  11. 11.
    I. Valent, P. Petrovič, P. Neogrády, I. Schreiber, and M. Marek, Electrodiffusion Kinetics of Ionic Transport in a Simple Membrane Channel, J. Phys. Chem. B, 2013, 117, p 14283–14293CrossRefGoogle Scholar
  12. 12.
    B. Bożek, A. Lewenstam, K. Tkacz-Śmiech, and M. Danielewski, Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model, ECS Trans., 2014, 61(15), p 11–20CrossRefGoogle Scholar
  13. 13.
    R. Hansford, Relation Between Mitochondrial Calcium Transport and Control of Energy Metabolism, Rev. Physiol. Biochem. Pharmacol., 1985, 102, p 2–72Google Scholar
  14. 14.
    E. Carafoli, Intracellular Calcium Homeostasis, Ann. Rev. Biochem., 1987, 56, p 395–435CrossRefGoogle Scholar
  15. 15.
    M. Crompton, Role of Mitochondria in Intracellular Calcium Regulation, Intracellular Calcium Regulation, F. Bronner, Ed, Alan R. Liss, New York, 1990, p 181–209.Google Scholar
  16. 16.
    J.G. McCormack, A.P. Halestrap, and R.M. Denton, Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism, Physiol. Rev., 1990, 70(2), p 391–420Google Scholar
  17. 17.
    M.R. Duchen, MRCa(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem J., 1992, 283 (Part 1), p 41-50.Google Scholar
  18. 18.
    S.S. Kannurpatti, B.G. Sanganahalli, P. Herman, and F. Hyder, Role of Mitochondrial Calcium Uptake Homeostasis in Resting State fMRI, Brain Networks, NMR Biomed., 2015, 28(11), p 1579–1588CrossRefGoogle Scholar
  19. 19.
    K. Dołowy, Warsaw University of Life Sciences - private communication 2010-2013.Google Scholar
  20. 20.
    H. Chang and G. Jaffé, Polarization in Electrolyte Solutions. Part I: Theory, J. Chem. Phys., 1952, 20, p 1071–1077CrossRefGoogle Scholar
  21. 21.
    W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, 1st ed., Akadémiai Kiadó, Budapest, 1981, p 123Google Scholar
  22. 22.
    W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Math. Comput., 1993, 60(201), p 433–437CrossRefGoogle Scholar
  23. 23.
    A.C. Hindmarsh, LSODE and LSODI, Two Initial Value Ordinary Differential Equation Solvers, ACM Signum Newslett., 1980, 15, p 10–11CrossRefGoogle Scholar
  24. 24.
    W.E. Morf, E. Pretsch, and N.F. De Rooij, Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes, J. Electroanal. Chem., 2010, 641(1), p 45–56CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • J. J. Jasielec
    • 1
  • R. Filipek
    • 1
    Email author
  • K. Szyszkiewicz
    • 1
  • T. Sokalski
    • 2
  • A. Lewenstam
    • 1
    • 2
  1. 1.Department of Physical Chemistry and Modeling, Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland
  2. 2.Process Chemistry Centre, c/o Centre for Process Analytical Chemistry and Sensor Technology (ProSens)Åbo Akademi UniversityÅbo-TurkuFinland

Personalised recommendations