Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel

Article

Abstract

The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.

Keywords

corrosion electron microscopy rust steel 

References

  1. 1.
    R.M. Cornell and U. Schwertmann, The Iron Oxides : Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley, KGaA, 2003CrossRefGoogle Scholar
  2. 2.
    Y. Waseda and S. Suzuki, Ed., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, 2006Google Scholar
  3. 3.
    J.K. Saha, Corrosion of Constructional Steels in Marine and Industrial Environment, Springer, Kolkata, 2013CrossRefGoogle Scholar
  4. 4.
    D. de la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-Term Atmospheric Corrosion of Mild Steel, Corros. Sci., 2011, 53, p 604–617CrossRefGoogle Scholar
  5. 5.
    T. Misawa, K. Hashimoto, and S. Shimodaira, The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14, p 131–149CrossRefGoogle Scholar
  6. 6.
    T. Misawa, T. Kyuno, W. Suetaka, and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Effect of Cu and P on the Rust Formation of Low Alloy Steels, Corros. Sci., 1971, 11, p 35–48CrossRefGoogle Scholar
  7. 7.
    U.R. Evans, Electrochemical Mechanism of Atmospheric Rusting, Nature, 1965, 206, p 980–982CrossRefGoogle Scholar
  8. 8.
    M. Stratmann and J. Müller, The Mechanism of the Oxygen Reduction on Rust-Covered Metal Substrates, Corros. Sci., 1994, 36, p 327–359CrossRefGoogle Scholar
  9. 9.
    U.R. Evans, Mechanism of Rusting, Corros. Sci., 1969, 9, p 813–821CrossRefGoogle Scholar
  10. 10.
    U.R. Evans and C.A.J. Taylor, Mechanism of Atmospheric Rusting, Corros. Sci., 1972, 12, p 227–246CrossRefGoogle Scholar
  11. 11.
    M. Stratmann, K. Bohnenkamp, and H.J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23, p 969–985CrossRefGoogle Scholar
  12. 12.
    T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Protective Amorphous Rust on Low Alloy Steel, Corros. Sci., 1974, 14, p 279–289CrossRefGoogle Scholar
  13. 13.
    T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, COMPOSITION and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812CrossRefGoogle Scholar
  14. 14.
    R. Baboian, Ed., Corrosion Tests and Standards: Application and Interpretation, 2nd ed., ASTM International, West Conshohocken, 2005Google Scholar
  15. 15.
    R. Huang, J.-J. Chang, and J.-K. Wu, Correlation Between Corrosion Potential and Polarization Resistance of Rebar in Concrete, Mater. Lett., 1996, 28, p 445–450CrossRefGoogle Scholar
  16. 16.
    R.P. Khatri, V. Sirivivatnanon, and P. Heeley, Critical Polarization Resistance in Service Life Determination, Cem. Concr. Res., 2004, 34, p 829–837CrossRefGoogle Scholar
  17. 17.
    K.B. Oldham and F. Mansfeld, Corrosion Rates from Polarization Curves: A New Method, Corros. Sci., 1973, 13, p 813–819CrossRefGoogle Scholar
  18. 18.
    J.R. Scully, Polarization Resistance Method for Determination of Instantaneous Corrosion Rates, Corrosion, 2000, 56, p 199–217CrossRefGoogle Scholar
  19. 19.
    H. Song and V. Saraswathy, Corrosion Monitoring of Reinforced Concrete Structures—A Review, Int. J. Electrochem. Sci., 2007, 2, p 1–28Google Scholar
  20. 20.
    B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, VCH mbH, Weinheim, 1995CrossRefGoogle Scholar
  21. 21.
    C.J. Strachan, T. Rades, K.C. Gordon, and J. Rantanen, Raman Spectroscopy for Quantitative Analysis of Pharmaceutical Solids, J. Pharm. Pharmacol., 2007, 59, p 179–192CrossRefGoogle Scholar
  22. 22.
    A. Raman, S. Nasrazadani, and L. Sharma, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Tests, Metallography, 1989, 22, p 79–96CrossRefGoogle Scholar
  23. 23.
    R.A. Antunes, R.U. Ichikawa, L.G. Martinez, and I. Costa, Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests, Int. J. Corros. 2014 (2014), Article ID 419570, 1-9Google Scholar
  24. 24.
    R. Balasubramaniam, A.V. Ramesh Kumar, and P. Dillmann, Characterization of Rust on Ancient Indian Iron, Curr. Sci., 2003, 85, p 1546–1555Google Scholar
  25. 25.
    R. Balasubramaniam and A.V. Ramesh, Kumar, Characterization of Delhi Iron Pillar Rust by X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Mossbauer Spectroscopy, Corros. Sci., 2000, 42, p 2085–2101CrossRefGoogle Scholar
  26. 26.
    S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of Iron Oxide Commenly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112, p 59–65CrossRefGoogle Scholar
  27. 27.
    B. Jegdić, D.M. Dražić, and J.P. Popić, Open Circuit Potentials of Metallic Chromium and Austenitic 304 Stainless Steel in Aqueous Sulphuric Acid Solution and the Influence of Chloride Ions on Them, Corros. Sci., 2008, 50, p 1235–1244CrossRefGoogle Scholar
  28. 28.
    T.P. Hoar, On the Relation Between Corrosion Rate and Polarization Resistance, Corros. Sci., 1967, 7, p 455–458CrossRefGoogle Scholar
  29. 29.
    X. Zhang, S. Yang, W. Zhang, H. Guo, and X. He, Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet—Dry Cycles, Corros. Sci., 2014, 82, p 165–172CrossRefGoogle Scholar
  30. 30.
    K.E. Garcia, C.A. Barrero, A.L. Morales, and J.M. Greneche, Lost iron and Iron Converted into Rust in Steels Submitted to Dry—Wet Corrosion Process, Corros. Sci., 2008, 50, p 763–772CrossRefGoogle Scholar
  31. 31.
    B. Panda, R. Balasubramaniam, and G. Dwivedi, On the Corrosion Behaviour of Novel High Carbon Rail Steels in Simulated Cyclic Wet—Dry Salt Fog Conditions, Corros. Sci., 2008, 50, p 1684–1692CrossRefGoogle Scholar
  32. 32.
    M. Stratmann and K. Hoffmann, In Situ Möβbauer Spectroscopic Studies of Reactions Within Rust Layers, Corros. Sci., 1989, 29, p 1329–1352CrossRefGoogle Scholar
  33. 33.
    Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006CrossRefGoogle Scholar
  34. 34.
    M. Morcillo, D. de la Fuente, I. Diaz, and Y.H. Cano, Atmospheric Corrosion of Mild Steel, Rev. Metal., 2011, 47, p 426–444CrossRefGoogle Scholar
  35. 35.
    Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2003, 77, p 603–608CrossRefGoogle Scholar
  36. 36.
    M. Yamashita, H. Nagano, T. Misawa, and H.E. Townsend, Structure of Protective Rust Layers Formed on Weathering Steels by Long-Term Exposure in the Industrial Atmospheres of Japan and North America, ISIJ Int., 1998, 38, p 285–290CrossRefGoogle Scholar
  37. 37.
    M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century, Corros. Sci., 1994, 36, p 283–299CrossRefGoogle Scholar
  38. 38.
    S. Hara, T. Kamimura, H. Miyuki, and M. Yamashita, Taxonomy for Protective Ability of Rust Layer Using Its Composition Formed on Weathering Steel Bridge, Corros. Sci., 2007, 49, p 1131–1142CrossRefGoogle Scholar
  39. 39.
    G.F. Hays, Now is the Time, World Corros. Organ. (April 2013), 1–2.Google Scholar
  40. 40.
    V.M. Malhotra and N.J. Carino, Handbook on Nondestructive Testing of Concrete, 2nd ed., ASTM International, West Coshohocken, 2004Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations