Enhancing Thermal Conductivity of Mg-Sn Alloy Sheet by Cold Rolling and Aging

  • Qiuyan Huang
  • Aitao TangEmail author
  • Shida Ma
  • Hucheng PanEmail author
  • Bo Song
  • Zhengyuan Gao
  • Muhammad Rashad
  • Fusheng Pan


In present work, effect of cold rolling and aging on thermal conductivity (TC) of the as-extruded Mg-2Sn alloy was studied. Experimental results revealed that TC of as-extruded sheet decreases to value of ~105.4 W/m/K after 18% reduction rolling. TC increases with increase in aging time and regains the highest value of 126 W/m/K. Enhanced TC of cold-rolled Mg-Sn alloys is attributed to the defects annihilation, residual stress release, and precipitations. The more pronounced rolling reduction would induce more second-phase precipitations, and thus TC of the 18% rolled alloy is larger than that of 5% rolled alloys. Texture is also an important factor affecting thermal conductivity of Mg alloys, and double-peak texture is not beneficial for thermal transportation. The result would shed light on the novel design of highly conductive Mg sheet.


aging cold rolling Mg alloy static recrystallization thermal conductivity 



The authors acknowledge the financial support from National Natural Science Foundation of China (No. 51525101, No. 51501032, No. 51171043, and No. 51371046), Program for New Century Excellent Talents in University (No.NECT-12-0109) and Fundamental Research Funds for the Central Universities (No. N130510002, No. N141003001, No. L1502025, and No. L1502047). Research funds from Liaoning Province (L20150176, 201501152) and from Chongqing City (CQZJKY2013001, 2014QK263, and CX201407). General Financial Grant from the China Postdoctoral Science Foundation (2015M581350).


  1. 1.
    A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloys, 2013, 1, p 2–22CrossRefGoogle Scholar
  2. 2.
    H.C. Pan, F.S. Pan, J. Peng, J. Gou, A.T. Tang, L. Wu, and H.W. Dong, High-Conductivity Binary Mg-Zn Sheet Processed by Cold Rolling and Subsequent Aging, J. Alloys Compd., 2013, 578, p 493–500CrossRefGoogle Scholar
  3. 3.
    G.W. Qin, Y.P. Ren, W. Huang, S. Li, and W.L. Pei, Grain Refining Mechanism of Al-Containing Mg Alloys with the Addition of Mn-Al Alloys, J. Alloys Compd., 2010, 507, p 410–413CrossRefGoogle Scholar
  4. 4.
    W. Chen, X. Wang, L. Hu, and E. Wang, Fabrication of ZK60 Magnesium Alloy Thin Sheets with Improved Ductility by Cold Rolling and Annealing Treatment, Mater. Des., 2012, 40, p 319–323CrossRefGoogle Scholar
  5. 5.
    X. Chen, J. Liu, Z. Zhang, and F. Pan, Effect of Heat Treatment on Electromagnetic Shielding Effectiveness of ZK60 Magnesium Alloy, Mater. Des., 2012, 42, p 327–333CrossRefGoogle Scholar
  6. 6.
    D. Ji, C. Liu, L. Tang, Y. Wan, and C. Huang, Microstructures and Mechanical Properties of a Hot Extruded Mg-4.45 Zn-0.46Y-0.76Zr Alloy Plate, Mater. Des., 2014, 53, p 602–610CrossRefGoogle Scholar
  7. 7.
    C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, and A. Tang, Preparation and Characterization of As-Extruded Mg-Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67CrossRefGoogle Scholar
  8. 8.
    M. Avvari and S. Narendranath, Influence of Route-R on Wrought Magnesium AZ61 Alloy Mechanical Properties Through Equal Channel Angular Pressing, J. Magnes. Alloys, 2014, 2, p 159–164CrossRefGoogle Scholar
  9. 9.
    M. Kiani, I. Gandikota, M. Rais-Rohani, and K. Motoyama, Design of Lightweight Magnesium Car Body Structure Under Crash and Vibration Constraints, J. Magnes. Alloys, 2014, 2, p 99–108CrossRefGoogle Scholar
  10. 10.
    B. Lv, J. Peng, Y. Peng, and A. Tang, The Effect of Addition of Nd and Ce on the Microstructure and Mechanical Properties of ZM21Mg alloy, J. Magnes. Alloys, 2013, 1, p 94–100CrossRefGoogle Scholar
  11. 11.
    T. Zhu, P. Fu, L. Peng, X. Hu, S. Zhu, and W. Ding, Effects of Mn Addition on the Microstructure and Mechanical Properties of Cast Mg-9Al-2Sn (wt.%) Alloy, J. Magnes. Alloys, 2014, 2, p 27–35Google Scholar
  12. 12.
    H. Zhang, G. Huang, J. Fan, H.J. Roven, B. Xu, and H. Dong, Deep Drawability and Drawing Behaviour of AZ31 Alloy Sheets with Different Initial Texture, J. Alloys Compd., 2014, 615, p 302–310CrossRefGoogle Scholar
  13. 13.
    H. Zhang, G. Huang, J. Fan, H.J. Roven, F. Pan, and B. Xu, Deep Drawability and Deformation Behavior of AZ31 Magnesium Alloy Sheets at 473 K, Mater. Sci. Eng. A, 2014, 608, p 234–241CrossRefGoogle Scholar
  14. 14.
    H. Zhang, W. Jin, J. Fan, W. Cheng, H.J. Roven, B. Xu, and H. Dong, Grain Refining and Improving Mechanical Properties of a Warm Rolled AZ31 Alloy Plate, Mater. Lett., 2014, 135, p 31–34CrossRefGoogle Scholar
  15. 15.
    A. Rudajevova and P. Lukac, Comparison of the Thermal Properties of AM20 and AS21 Magnesium Alloys, Mater. Sci. Eng. A, 2005, 397, p 16–21CrossRefGoogle Scholar
  16. 16.
    A. Rudajevova, M. Staněk, and P. Lukáč, Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al alloys, Mater. Sci. Eng. A, 2003, 341, p 152–157CrossRefGoogle Scholar
  17. 17.
    A. Rudajevová, F. Von Buch, and B. Mordike, Thermal Diffusivity and Thermal Conductivity of MgSc Alloys, J. Alloys Compd., 1999, 292, p 27–30CrossRefGoogle Scholar
  18. 18.
    M. Yamasaki and Y. Kawamura, Thermal Diffusivity and Thermal Conductivity of Mg-Zn-Rare Earth Element Alloys with Long-Period Stacking Ordered Phase, Scr. Mater., 2009, 60, p 264–267CrossRefGoogle Scholar
  19. 19.
    C.J. Chen, Q.D. Wang, and D.D. Yin, Thermal Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy, J. Alloys Compd., 2009, 487, p 560–563CrossRefGoogle Scholar
  20. 20.
    S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim, and C.M. Suh, Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 °C to 400 °C, Int. J. Thermophys., 2012, 34, p 1–8Google Scholar
  21. 21.
    J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo, and Y. Hao, Anisotropy of Thermal Conductivity and Mechanical Properties in Mg-5Zn-1Mn Alloy, Mater. Des., 2012, 40, p 257–261CrossRefGoogle Scholar
  22. 22.
    J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, and G. Shi, Thermal Characteristics of Mg-Zn-Mn Alloys with High Specific Strength and High Thermal Conductivity, J. Alloys Compd., 2013, 578, p 32–36CrossRefGoogle Scholar
  23. 23.
    H. Pan, F. Pan, X. Wang, J. Peng, A. Tang, J. She, and J. Gou, Correlation on the electrical and thermal conductivity for binary Mg-Al and Mg-Zn alloy, Int. J. Thermophys., 2013, 34, p 1336–1346CrossRefGoogle Scholar
  24. 24.
    H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, and A. Tang, Thermal and Electrical Conductivity of Binary Magnesium Alloys, J Mater. Sci., 2014, 49, p 3107–3124CrossRefGoogle Scholar
  25. 25.
    M.A. Gibson, X. Fang, C.J. Bettles, and C.R. Hutchinson, The Effect of Precipitate State on the Creep Resistance of Mg-Sn Alloys, Scr. Mater., 2010, 63, p 899–902CrossRefGoogle Scholar
  26. 26.
    F.R. Elsayed, T.T. Sasaki, T. Ohkubo, H. Takahashi, S.W. Xu, S. Kamado, and K. Hono, Effect of Extrusion Conditions on Microstructure and Mechanical Properties of Microalloyed Mg-Sn-Al-Zn Alloys, Mater. Sci. Eng. A, 2013, 588, p 318–328CrossRefGoogle Scholar
  27. 27.
    W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, and S.S. Park, Strength and Ductility of Novel Mg-8Sn-1Al-1Zn Alloys Extruded at Different Speeds, Mater. Lett., 2011, 65, p 1525–1527CrossRefGoogle Scholar
  28. 28.
    J. Leitner, P. Voňka, D. Sedmidubský, and P. Svoboda, Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides, Thermochimica Acta, 2010, 497, p 7–13CrossRefGoogle Scholar
  29. 29.
    A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner, Thermal Analytical Investigations of the Magnesium Alloys AM 60 and AZ 91 Including the Melting Range, Thermochimica Acta, 2002, 382, p 269–275CrossRefGoogle Scholar
  30. 30.
    J. Zhang, W. Li, and Z. Guo, Static Recrystallization and Grain Growth During Annealing of an Extruded Mg-Zn-Zr-Er Magnesium Alloy, J. Magnes. Alloys, 2013, 1, p 31–38CrossRefGoogle Scholar
  31. 31.
    C. Kittel, Introduction to Solid State Physics, 5th ed., Wiley, New York, 1976Google Scholar
  32. 32.
    H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, and A. Tang, Correlation on the Electrical and Thermal Conductivity for Binary Mg-Al and Mg-Zn Alloys, Int. J. Thermophys., 2013, 34, p 1336–1346CrossRefGoogle Scholar
  33. 33.
    E.I. Salkovitz, A.I. Schindler, and E.W. Kammer, Transport Properties of Dilute Binary Magnesium Alloys, Phys. Rev., 1957, 105, p 887–892CrossRefGoogle Scholar
  34. 34.
    Q. Yang, B. Jiang, H. Pan, B. Song, Z. Jiang, J. Dai, L. Wang, and F. Pan, Influence of Different Extrusion Processes on Mechanical Properties of Magnesium Alloy, J. Magnes. Alloys, 2014, 2, p 220–224CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Qiuyan Huang
    • 1
  • Aitao Tang
    • 1
    Email author
  • Shida Ma
    • 1
  • Hucheng Pan
    • 2
    Email author
  • Bo Song
    • 3
  • Zhengyuan Gao
    • 4
  • Muhammad Rashad
    • 1
  • Fusheng Pan
    • 1
  1. 1.National Engineering Research Center for Magnesium AlloysChongqing UniversityChongqingChina
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina
  3. 3.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  4. 4.School of Mechatronics and Automotive EngineeringChongqing Jiaotong UniversityChongqingChina

Personalised recommendations