Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes

  • Piotr KustraEmail author
  • Andrij MileninEmail author
  • Bartłomiej Płonka
  • Tsuyoshi Furushima


Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.


dieless drawing process extrusion FEM MgCa0.8 magnesium optimization 



This research was supported in part by PL Grid Infrastructure, Financial assistance from the NCBiR of Poland, Project No. V4-Jap/2/2016 is acknowledged.


  1. 1.
    P. Machado, Extrusion die design, Proceeding of Fifth International Extrusion Technology Seminar, Vol. 1, May 19–22, 1992 (Chicago, USA), p. 385–389.Google Scholar
  2. 2.
    M. Kiuchi, J. Yanagimoto, and V. Mendoza, Three-Dimensional FE Simulation and Extrusion Die Design, J. Jpn. Soc. Technol. Plast., 1998, 39, p 27–32Google Scholar
  3. 3.
    J. Herberg, K. Gundeso, and I. Skauvic, Application of Numerical Simulation in Design of Extrusion Dies, 6 International Aluminium Extrusion Technology Seminar, May 14–17, 1996 (Chicago, USA), p 275–281Google Scholar
  4. 4.
    J.L. Chenot and F. Bay, An Overview of Numerical Modeling Techniques, J. Mater. Process. Technol., 1998, 80–81, p 8–15CrossRefGoogle Scholar
  5. 5.
    J.L. Chenot, Resent Contributions to the Finite Element Modelling of Metal Forming Processes, J. Mater. Process. Technol., 1992, 34, p 9–18CrossRefGoogle Scholar
  6. 6.
    B.J.E. Rens, W.A.M. Brekelmans, and F.P.T. Baaijens, A Semi-Structured Mech Generator Applied to Extrusion, Proceedings of the 7 International Conference on Numerical Methods in Industrial Forming Processes, J. Huetink, F.P.T. Baaijens, Ed., Jun 22–25, 1998 (Enschede, Netherlands), p 621–626Google Scholar
  7. 7.
    A. Milenin, Mathematical Modeling of Operations of Correcting the Dies for Section Extruding., Metallurgicheskaya i Gornorudnaya Promyshlennost, 2000, Vol. 1–2, p 64–66 (in Russina)Google Scholar
  8. 8.
    A. Milenin, S. Berski, G. Banaszek, and H. Dyja, Theoretical Analysis and Optimization of Parameters in Extrusion Process of Explosive Cladded Bimetallic Rods, J. Mater. Process. Technol., 2004, 157158, special issue, p 208–212Google Scholar
  9. 9.
    A.I. Lishnij, N.V. Biba, and A. Milenin, Two Levels Approach to the Problem of Extrusion Optimization, Simulation of Materials Processing: Theory, Methods and Applications, Proceedings of the 7 International Conference on Numerical Methods in Industrial Forming Processes, J. Huetink, and F.P.T. Baaijens, Ed., Jun 22–25, 1998 (Enschede, Netherlands), p 627–631Google Scholar
  10. 10.
    N. Biba, S. Stebunov, A. Lishny, and A. Vlasov, New Approach to 3D Finite-Element Simulation of Material Flow and its Application to Bulk Metal Forming, 7th International Conference on Technology of Plasticity, Oct. 27–Nov. 1, 2002 (Yokohama, Japan), 2, p 829–834Google Scholar
  11. 11.
    A. Milenin, Modelowanie Numeryczne Procesów Wyciskania Profili z Zastosowaniem Gęstości Dyslokacji jako Zmiennej Wewnętrznej w Modelu Reologicznym Materiału, Informatyka w Technologii Materiałów, 2002, 1(2), p 26–33 (in Polish)Google Scholar
  12. 12.
    A.I. Lishnij, N.V. Biba, and A.A. Milenin, Two Levels Approach to the Problem Of Extrusion Optimization, Simulation of Materials Processing: Theory, Methods and Applications. Proceedings of the 7 International Conference on Numerical Methods in Industrial Forming Processes, J. Huetink, and F.P.T. Baaijens, Ed., Jun 22-25, 1998 (Enschede, Netherlands), p 627-631Google Scholar
  13. 13.
    A. Milenin, A.N. Golovko, and I. Mamuzic, The Application of Three-Dimensional Computer Simulation when Developing Dies for Extrusion of Aluminium Shapes, Metallurgija, 2002, 41(1), p 53–55Google Scholar
  14. 14.
    N. Odawa, M. Shiomi, and K. Osakada, Forming Limit of Magnesium Alloy at Elevated Temperatures for Precision Forming, Int. J. Mach. Tools Man., 2002, 42, p 607–614CrossRefGoogle Scholar
  15. 15.
    K. Yoshida, Cold Drawing of Magnesium Alloy Wire and Fabrication of Microscrews, Steel Grips., 2004, 2, p 199–202Google Scholar
  16. 16.
    H. Haferkamp, V. Kaese, M. Niemeyer, K. Phillip, T. Phan-Tan, B. Heublein, and R. Rohde, Exploration of Magnesium Alloys as New Material for Implantation, Materialwiss. Werkst., 2001, 32, p 116–120CrossRefGoogle Scholar
  17. 17.
    M. Thomann, Ch Krause, D. Bormann, N. Von der Höh, D. Windhagen, and A. Meyer-Lindenberg, Comparison of the Resorbable Magnesium Alloy LAE442 an MgCa0,8 Concerning Their Mechanical Properties, Gradient Degradation and Bone Implant-Contact after 12 Month Implantation in Rabbit Model, Materialwiss. Werkst., 2009, 40(1–2), p 82–88CrossRefGoogle Scholar
  18. 18.
    A. Milenin, D. Byrska, and O. Gridin, The Multi-Scale Physical and Numerical Modelling of Fracture Phenomena in the MgCa0.8 Alloy, Comput. Struct., 2011, 89, p 1038–1049CrossRefGoogle Scholar
  19. 19.
    A. Milenin, D.J. Byrska, O. Grydin, and M. Shaper, The Experimental Research and the Numerical Modeling of the Fracture Phenomena in Micro Scale, Comput. Methods Mater. Sci., 2010, 10, p 61–68Google Scholar
  20. 20.
    A. Milenin, M. Gzyl, T. Rec, and B. Płonka, Computer Aided Design of Wires Extrusion from Biocompatible Mg-Ca Magnesium Alloy, Arch. Metall. Mater., 2014, 59, p 551–556Google Scholar
  21. 21.
    A. Milenin and P. Kustra, Numerical and Experimental Analysis of Wire Drawing for Hardly Deformable Biocompatible Magnesium Alloys, Arch. Metall. Mater., 2013, 58, p 55–62Google Scholar
  22. 22.
    V. Weiss and R.A. Kot, Dieless Wire Drawing with Transformation Plasticity, Wire J., 1969, 9, p 182–189Google Scholar
  23. 23.
    T. Furushima and K. Manabe, Experimental Study on Multi-Pass Dieless Drawing Process of Superplastic Zn-22 % Al Alloy Microtubes, J. Mater. Process. Technol., 2007, 187–188, p 236–240CrossRefGoogle Scholar
  24. 24.
    T. Furushima, A. Shirasaki, and K. Manabe, Fabrication of Noncircular Multicore Microtubes by Superplastic Dieless Drawing Process, J. Mater. Process. Technol., 2014, 214, p 29–35CrossRefGoogle Scholar
  25. 25.
    T. Furushima, and K. Manabe, Workability of AZ31 Magnesium Alloy Tubes in Dieless Drawing Process, Steel Res. Int., special issue, 2012, p 851–854Google Scholar
  26. 26.
    K. Yoshida and A. Koiwa, Cold Drawing of Magnesium Alloy Tubes for Medical, ASME 2011 International Manufacturing Science and Engineering Conference, June 13–17, 2011 (Corvallis, Oregon, USA), p 541–545Google Scholar
  27. 27.
    M. Kopernik and A. Milenin, Two-Scale Finite Element Model of Multilayer Blood Chamber of POLVAD_EXT, Arch. Civ. Mech. Eng., 2011, 12(2), p 178–185CrossRefGoogle Scholar
  28. 28.
    J.L. Chenot, L. Fourment, T. Coupez, R. Ducloux, and E. Wey, Forge3—A General Tool for Practical Optimization of Forging Sequence of Complex Three-Dimensional Parts in Industry, International Conference on Forging and Related Technology, 1998, Suffolk, UK, p 113–122Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Institute of Non-Ferrous Metals, Light Metals Division in SkawinaSkawinaPoland
  3. 3.Tokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations