Advertisement

NiTi-Polyimide Composites Prepared Using Thermal Imidization Process

  • D. Vokoun
  • P. Sysel
  • L. Heller
  • L. Kadeřávek
  • M. Svatuška
  • T. Goryczka
  • V. Kafka
  • P. Šittner
Article

Abstract

We manufactured NiTi plate-polyimide composite samples and analyzed their thermomechanical behavior. The residual stresses formed in the composite result from the shift of transformation temperatures and shape changes during thermal cycling. We demonstrate the use of finite element analysis for modeling the shape changes. The shape changes result from the difference in coefficients of thermal expansion and from the changes of Young’s modulus and of the coefficient of thermal expansion in the NiTi shape memory alloy.

Keywords

actuator composite model NiTi polyimide residual stress 

Notes

Acknowledgment

This work has been supported by the Czech Science Foundation, within projects GA14-15264S and GC15-13174J.

References

  1. 1.
    O. Ishii, Y. Miyahara, S. Kambe, N. Kutsuzawa, and A. Ishida, Repeatable Shape Memory Effect and Mechanical Resonance of TiNiCu-Coated Magnetic Ribbons, J. Phys. Conf. Ser., 2011, 266, p 012070CrossRefGoogle Scholar
  2. 2.
    K.A. Tsoi, J. Schrooten, Y. Zheng, and R. Stalmans, Part II. Thermomechanical Characteristics of Shape Memory Alloy Composites, Mater. Sci. Eng. A, 2004, 368, p 299–310CrossRefGoogle Scholar
  3. 3.
    L. Heller, D. Vokoun, P. Sittner, and H. Finckh, 3D Flexible NiTi-Braided Elastomer Composites for Smart Structure Applications, Smart Mater. Struct., 2012, 21, p 045016CrossRefGoogle Scholar
  4. 4.
    D. Vokoun, P. Sedlak, M. Frost, J. Pilch, D. Majtas, and P. Sittner, Velcro-Like Fasteners Based on NiTi Micro-Hook Arrays, Smart Mater. Struct., 2011, 20, p 085027CrossRefGoogle Scholar
  5. 5.
    J.J. Gill, D.T. Chang, L.A. Momoda, and G.P. Carman, Manufacturing issues of thin film NiTi microwrapper, Sensors and Actuators A, 2001, 93, p 148–156CrossRefGoogle Scholar
  6. 6.
    A. Ishida and M. Sato, Ti-Ni-Cu Shape-Memory Alloy Thin Film Formed on Polyimide Substrate, Thin Solid Films, 2008, 516, p 7836–7839CrossRefGoogle Scholar
  7. 7.
    W.L. Benard, H. Kahn, A.H. Heuer, and M.A. Huff, Thin-Film Shape-Memory Alloy Actuated Micropumps, J. Microelectromech. Syst., 1998, 7, p 245–251CrossRefGoogle Scholar
  8. 8.
    J.L. Seguin, M. Bendahan, A. Isalgue, V. Esteve-Cano, H. Carchano, and V. Torra, Low Temperature Crystallised Ti-Rich NiTi Shape Memory Alloy Films for Microactuators, Sens. Actuators A, 1999, 74, p 65–69CrossRefGoogle Scholar
  9. 9.
    A. Ishida, Ti-Ni-Cu/Polyimide Composite-Film Actuator and Simulation Tool, Sens. Actuators A, 2015, 222, p 228–236CrossRefGoogle Scholar
  10. 10.
    V.G. Kotnur, F.D. Tichelaar, and G.C.A.M. Janssen, Sputter Deposited Ni-Ti Thin Films on Polyimide Substrate, Surf. Coat. Technol., 2013, 222, p 44–47CrossRefGoogle Scholar
  11. 11.
    V.G. Kotnur, F.D. Tichelaar, W.T. Fu, J.T.M. De Hosson, and G.C.A.M. Janssen, Shape Memory NiTi Thin Films Deposited on Polyimide at Low Temperature, Surf. Coat. Technol., 2014, 258, p 1145–1151CrossRefGoogle Scholar
  12. 12.
    T. Verbiest, D.M. Burland, M.C. Jurich, V.Y. Lee, R.D. Miller, and W. Volksen, Exceptionally Thermally Stable Polyimides for Second-Order Nonlinear Optical Applications, Science, 1995, 268, p 1604–1606CrossRefGoogle Scholar
  13. 13.
    J. de Abajo and J.G. de la Campa, Processable Aromatic Polyimides. Source: Progress in Polyimide Chemistry, Vol 140, Advances in Polymer Science Springer, Berlin, 1999, p 23–59Google Scholar
  14. 14.
    K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998Google Scholar
  15. 15.
    S. Numata and T. Miwa, Thermal Expansion Coefficients and Moduli of Uniaxially Stretched Polyimide Films with Rigid and Flexible Molecular Chains, Polymer, 1989, 30, p 1170–1174CrossRefGoogle Scholar
  16. 16.
    Z.D. Wang, X.X. Zhao, S.Q. Jiang, and J.J. Lu, Determining Thermal Expansion Coefficient of Stressed Thin Films at Low Temperature, Polym. Test., 2005, 24, p 839–843CrossRefGoogle Scholar
  17. 17.
    S.X. Lu, P. Cebe, and M. Capel, Thermal Stability and Thermal Expansion Studies of PEEK and Related Polyimides, Polymer, 1996, 37, p 2999–3009CrossRefGoogle Scholar
  18. 18.
    I. Stachiv, D. Vokoun, and Y. Jeng, Measurement of Young’s Modulus and Volumetric Mass Density/Thickness of Ultrathin Films Utilizing Resonant Based Mass Sensors, Appl. Phys. Lett., 2014, 104, p 083102CrossRefGoogle Scholar
  19. 19.
    H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 1969, 2, p 65–71CrossRefGoogle Scholar
  20. 20.
  21. 21.
    T.W. Clyne, Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding, Key Eng. Mater., 1996, 116-117, p 307–330CrossRefGoogle Scholar
  22. 22.
    R.W. Pryor, Multiphysics Modeling Using Comsol: A first Principles Approach, Jones and Bartlett publishers, Sudbury, 2011Google Scholar
  23. 23.
    Y. Liu, X. Chen, and P.G. McCormick, Effect of Low Temperature Aging on the Transformation Behavior of Near-Equiatomic NiTi, J. Mater. Sci., 1997, 32, p 5979–5984CrossRefGoogle Scholar
  24. 24.
    K.A. Tsoi, R. Stalmans, and J. Schrooten, Transformational Behavior of Constrained Shape Memory Alloys, Acta Mater., 2002, 50, p 3535–3544CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • D. Vokoun
    • 1
  • P. Sysel
    • 2
  • L. Heller
    • 1
  • L. Kadeřávek
    • 1
    • 3
  • M. Svatuška
    • 1
    • 4
  • T. Goryczka
    • 5
  • V. Kafka
    • 6
  • P. Šittner
    • 1
  1. 1.Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Department of PolymersUniversity of Chemistry and TechnologyPragueCzech Republic
  3. 3.Department of Materials, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  4. 4.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  5. 5.Institute of Materials ScienceUniversity of Silesia in KatowiceKatowicePoland
  6. 6.Institute of Theoretical and Applied Mechanics of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations