Journal of Materials Engineering and Performance

, Volume 25, Issue 8, pp 3121–3127 | Cite as

Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

  • Dragana Stević
  • Dijana Mihajlović
  • Radovan Kukobat
  • Yoshiyuki Hattori
  • Kento Sagisaka
  • Katsumi Kaneko
  • Suzana Gotovac AtlagićEmail author


Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.


core/shell structures iron oxide nanoparticles mining waste recycle waste sludge 



Authors thank the Ministry of Science and Technology of Republic of Srpska (Grant Number: 19/6-020/966-90/15). The work is also supported by the ArcelorMittal Prijedor through the field safety education and the permission for scientific work inside the company’s mine. The research is performed under the frame of the Memorandum of understanding signed between Shinshu University and University of Banja Luka in 2015.


  1. 1.
    D.L. Huber, Synthesis, Properties, Applications of Iron Nanoparticles, Small, 2005, 1(5), p 482–501CrossRefGoogle Scholar
  2. 2.
    A.I. Martinez, M.A. Garcia-Lobato, and D.L. Perry, Study of the Properties of Iron Oxide Nanostructures, Research in Nanotechnology Developments, A. Barrañón, Ed., Nova Science, New York, 2009, p 183–194 Google Scholar
  3. 3.
    L. Wezeng, W. Zhou, H. Li, Z. Zhou, B. Zhou, S. Gongquan, and Q. Xin, Nano-stuctured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell, Electrochim. Acta, 2004, 49(7), p 1045–1055CrossRefGoogle Scholar
  4. 4.
    M. Ohnuma, K. Hono, T. Yanai, H. Fukunaga, and Y. Yoshizawa, Direct Evidence for Structural Origin of Stress-Induced Magnetic Anisotropy in Fe-Si-B-Nb-Cu Nanocrystalline Alloys, Appl. Phys. Lett., 2003, 83(14), p 2859–2861CrossRefGoogle Scholar
  5. 5.
    J. He, H. Zhao, J. Wang, J. Wang, and J. Chen, Hydrothermal Synthesis and Electrochemical Properties of Nano-sized Co-Sn Alloy Anodes for Lithium Ion Batteries, J. Alloy. Compd., 2010, 58(2), p 629–635CrossRefGoogle Scholar
  6. 6.
    F. Riccardo, J. Jellinek, and R.L. Johston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev., 2008, 108(3), p 845–910CrossRefGoogle Scholar
  7. 7.
    E.E. Carpenter, J.A. Sims, J.A. Wienmann, W.L. Zhou, and C.J. O’Connor, Magnetic Properties of Iron and Iron Platinum Alloys Synthesized via Microemulsion Techniques, J. Appl. Phys., 2000, 87(9), p 5615–5617CrossRefGoogle Scholar
  8. 8.
    S. Roy, B. Bay, and D. Chakravorty, Magnetic Properties of Iron Nanoparticles Grown in a Glass Matrix, J. Appl. Phys., 1996, 79, p 1642–1645CrossRefGoogle Scholar
  9. 9.
    D.K. Kim, W. Voit, W. Zapka, M. Bjelke, M. Muhammed, and K.V. Rao, Biomedical Application of Ferrofluids Containing Magnetite Nanoparticles, Mater. Research Society Proceedings 676, 2001, Y8.32.1.Google Scholar
  10. 10.
    A.K. Gupta and M. Gupta, Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications, Biomaterials, 2005, 26(18), p 3995–4021CrossRefGoogle Scholar
  11. 11.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, Application of Magnetic Nanoparticles in Biomedicine, J. Phys. D, 2003, 36, p 167–181CrossRefGoogle Scholar
  12. 12.
    B. Plietker, Iron Catalysis: Fundamentals and Applications, Springer, Heidelberg, 2011CrossRefGoogle Scholar
  13. 13.
    A.N. Pour, M.R. Housaindokht, S.F. Tayyari, and J. Zarkesh, Fischer-Tropsch Synthesis by Nano-structured Iron Catalyst, J. Nat. Gas Chem., 2010, 19(3), p 284–292CrossRefGoogle Scholar
  14. 14.
    D.R. Wilburn and D.I. Bleiwas, Platinum-Group Metals-World Supply and Demand, U.S. Geological Survey Open-File Report, U.S. Department of the Interior, U.S. Geological Survey, No. 2004-1224, 2004.Google Scholar
  15. 15.
    A. Cowley, Platinum 2013 Interim Review, Johnson & Matthey, Royston, 2013Google Scholar
  16. 16.
    C. Bolm, A New Iron Age, Nat. Chem., 2009, 1(5), p 420CrossRefGoogle Scholar
  17. 17.
    K. Maheshwari, Sustainable Metal Catalysis The Paradigm of Iron Metal, Seminar Green Chemistry and Catalysis at the Department of Chemistry at the Institute of Chemical Technology, Mumbai, 2011.Google Scholar
  18. 18.
    X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, and R.S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite as a High-Performance Anode Material for Lithium Ion Batteries, ACS Nano, 2011, 5(4), p 3333–3338CrossRefGoogle Scholar
  19. 19.
    D. Wang, Y. Li, Q. Wang, and T. Wang, Nanostructured Fe2O3-Graphene Composite as a Novel Electrode Material for Supercapacitors, J. Solid State Electrochem., 2011, 16, p 2095–2102CrossRefGoogle Scholar
  20. 20.
    T. Kim, A. Magasinski, K. Jacob, K. Yushin, and R. Tannenbaum, Synthesis and Electrochemical Performance of Reduced Graphene Oxide/Maghemite Composite Anode for Lithium Ion Batteries, Carbon, 2013, 52, p 56–64CrossRefGoogle Scholar
  21. 21.
    C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material, ACS Nano, 2013, 7(5), p 4459–4469CrossRefGoogle Scholar
  22. 22.
    S. Gotovac-Atlagić, J. Malina, and M. Mionić-Ebersold, From Mud to Bud-Recovering Bosnian Forgotten Iron, 8 th European Waste Water Management Conference and Exhibition, Manchester, 2014Google Scholar
  23. 23.
    3030 G, Nitric acid-sulfuric acid digestion, 3030 H. Nitric acid-perchloric acid digestion, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–6Google Scholar
  24. 24.
    3500-Fe D. Phenanthroline Method, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–68.Google Scholar
  25. 25.
    3500-Mn B. Persulfate Method, Standard Methods for the Examination of Water and Wastewater, A.E. Eaton, L.S. Clesceri, and A.E. Greenberg, Ed., American Public Health Association, 1995, p. 3–6.Google Scholar
  26. 26.
    D. Stević, K. Kaneko, Y. Hattori, R. Kukobat, I. Šurlan, and S. Gotovac-Atlagić, Precipitation of the Highly Crystalline Iron Nanoparticles from the Iron Mine Waste Water, International Conference of Environmental Protection and Related Sciences Applicable in Environmental Protection, Novi Sad, Serbia, 2014.Google Scholar
  27. 27.
    A. Grbić and R. Cvijić, Novi prilozi za geologiju i metalurgiju gvožđa “Ljubija”; Prijedor, 2003, p. 49–55.Google Scholar
  28. 28.
    H.-J. Song, X.-H. Jia, and X. Zhang, Controllable Fabrication, Growth Mechanism, and Gas Sensing Properties of Hollow Hematite Polyhedra, J. Mater. Chem., 2012, 22(42), p 22699–22705CrossRefGoogle Scholar
  29. 29.
    H. Wang, D. Ma, X. Huang, and X. Zhang, General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance, Sci. Rep., 2012, 2(701), p 1 8Google Scholar
  30. 30.
    K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Origin of Superhigh Surface Area and Microcrystalline Graphitic Structures of Activated Carbons, Carbon, 1992, 30, p 1075–1088CrossRefGoogle Scholar
  31. 31.
    Lj.R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla, Chemistry and Physics of Carbon: A Series of Advances, Vol 27, Marcel Dekker, Inc., New York, 2000, p 227–405Google Scholar
  32. 32.
    S. Utsumi and K. Kaneko, Carbon Nanotubes-From Research to Applications, S. Bianco, Ed., InTech-Open Access Company, Rijeka, 2011, p 37–54 Google Scholar
  33. 33.
    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, Cambridge, 2011Google Scholar
  34. 34.
    T.S. Oyama, Introduction to the Chemistry of Transition Metal Carbides and Nitrides, Springer, Dordrecht, 1996CrossRefGoogle Scholar
  35. 35.
    J.C. Park, S.C. Yeo, D.H. Chun, J.T. Lim, J.-I. Yang, H.-T. Lee, S. Hong, H.M. Lee, C.S. Kim, and H. Jung, Highly Activated K-Doped Iron Carbide Nanocatalysts Designed by Computational Simulation for Fischer-Tropsch Synthesis, J. Mater. Chem. A, 2014, 2(35), p 14371–14379CrossRefGoogle Scholar
  36. 36.
    R.E. Smalley and B. Yakobson, Solid State Commun., 1998, 107(11), p 597–606CrossRefGoogle Scholar
  37. 37.
    C. Okoli, M. Boutonnet, L. Mariey, S. Järås, and G. Rajarao, Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purification, J. Chem. Technol. Biotechnol., 2011, 86(11), p 1386–1393CrossRefGoogle Scholar
  38. 38.
    J. Hjøllum, A Study of Iron Oxide Nano-particles Manufactured by Reverse Micelles, M.S. Thesis, University of Copenhagen, Denmark, 2004.Google Scholar
  39. 39.
    S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, and G.Y. Yurkov, Magnetic Nanoparticles: Preparation, Structure and Properties, Russ. Chem. Rev., 2005, 74(6), p 489–520CrossRefGoogle Scholar
  40. 40.
    S. Bahir, R.W. McCabe, C. Boxall, M.S. Leaver, and D. Mobbs, Synthesis of α- and β-FeOOH Iron Oxide Nanoparticles in Non-ionic Surfactant Medium, J. Nanopart. Res., 2009, 11, p 701–706CrossRefGoogle Scholar
  41. 41.
    W. Zhou, J. Zhu, Ch Cheng, J. Liu, H. Yang, Ch Cong, C. Guan, X. Jia, H.J. Fan, Q. Yan, ChM Lid, and T. Yu, A General Strategy Toward Graphene@metal Oxide Core-Shell Nanostructures for High-Performance Lithium Storage, Energy Environ. Sci., 2011, 4, p 4954–4961CrossRefGoogle Scholar
  42. 42.
    D. Chen, W. Wei, R. Wang, J. Zhu, and L. Guo, α-Fe2O3 Nanoparticles Anchored on Graphene with 3D Quasi-laminated Architecture: In Situ Wet Chemistry Synthesis and Enhanced Electrochemical Performance for Lithium Ion Batteries, New J. Chem., 2012, 36, p 1589–1595CrossRefGoogle Scholar
  43. 43.
    G.-W. Zhou, J. Wang, P. Gao, X. Yang, Y. He, X. Liao, J. Yang, and Z. Ma, Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes, Ind. Eng. Chem. Res., 2013, 52, p 1197–1204CrossRefGoogle Scholar
  44. 44.
    H. Hashimoto, G. Kobayashi, R. Sakuma, T. Fujii, N. Hayashi, T. Suzuki, R. Kanno, M. Takano, and J. Takada, Bacterial Nanometric Amorphous Fe-Based Oxide: A Potential Lithium-Ion Battery Anode Material, ACS Appl. Mater. Interfaces, 2014, 6(8), p 5374–5378CrossRefGoogle Scholar
  45. 45.
    A. Tomić, Economics of the Remediation of the Waste Lakes in Mining by Extraction of the Metal Ions as the Raw Material for Nanotechnology, Graduation Thesis, University of Banja Luka, Faculty of Technology, Banja Luka, 2016.Google Scholar
  46. 46., Product Number 720712.

Copyright information

© ASM International 2016

Authors and Affiliations

  • Dragana Stević
    • 1
  • Dijana Mihajlović
    • 2
  • Radovan Kukobat
    • 3
    • 4
  • Yoshiyuki Hattori
    • 5
  • Kento Sagisaka
    • 5
  • Katsumi Kaneko
    • 4
  • Suzana Gotovac Atlagić
    • 1
    • 6
    Email author
  1. 1.Faculty of TechnologyUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  2. 2.Faculty of AgricultureUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  3. 3.Department of Electrical EngineeringShinshu UniversityNaganoJapan
  4. 4.Center for Energy and Environmental ScienceShinshu UniversityNaganoJapan
  5. 5.Division of Chemistry and Materials, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  6. 6.Faculty of SciencesUniversity of Banja LukaBanja LukaBosnia and Herzegovina

Personalised recommendations