Journal of Materials Engineering and Performance

, Volume 25, Issue 4, pp 1515–1525 | Cite as

NiFe2O4 Spinel Protection Coating for High-Temperature Solid Oxide Fuel Cell Interconnect Application

  • Reza Irankhah
  • Babak Raissi
  • Amir Maghsoudipour
  • Abdullah Irankhah
  • Sasan Ghashghai


In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant (K P) of 8.9 × 10−15 g2 cm−4 s−1.


cyclic oxidation electrophoretic deposition NiFe2O4 Spinel SOFC interconnect solid state reaction 



This study has been carried out under the financial support of Iran Renewable Energy Organization.


  1. 1.
    Mark C. Williams, Joseph P. Strakey, and Wayne A. Surdoval, The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program, J. Power Sources, 2005, 143, p 191–196CrossRefGoogle Scholar
  2. 2.
    Wei Zhou, Ran Ran, and Zongping Shao, Progress in Understanding and Development of Ba0.5Sr0.5Co0.8Fe0.2O3-X-Based Cathodes for Intermediate-Temperature Solid-Oxide Fuel Cells: A Review, J. Power Sources, 2009, 192(2), p 231–246CrossRefGoogle Scholar
  3. 3.
    T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, Application of Fe-16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell, Solid State Ion., 2001, 143(2), p 131–150CrossRefGoogle Scholar
  4. 4.
    M.A. Callander, Material Issues for Fuel Cell Applications, Mater. High Temp., 2007, 24(3), p 197–203CrossRefGoogle Scholar
  5. 5.
    Zhu Wz and Deevi Sc, Opportunity of Metallic Interconnects for Solid Oxide Fuel Cells: A Status on Contact Resistance, Mater. Res. Bull., 2003, 38(6), p 957–972CrossRefGoogle Scholar
  6. 6.
    W.Z. Zhu and S.C. Deevi, Development of Interconnect Materials for Solid Oxide Fuel Cells, Mater. Sci. Eng. A, 2003, 348(1-2), p 227–243CrossRefGoogle Scholar
  7. 7.
    Maria Jose Garcia-Vargas, Laurent Lelait, Vladislav Kolarik, Harald Fietzek, and Maria del Mar Juez-Lorenzo, Oxidation of Potential SOFC Interconnect Materials, Crofer 22 APU and Avesta 353 MA, in Dry and Humid Air Studied In Situ by X-ray Diffraction, Mater. High Temp., 2005, 22(3-4), p 245–251CrossRefGoogle Scholar
  8. 8.
    J. Yoo, S.-K. Woo, J.H. Yu, S. Lee, and G.W. Park, La0.8Sr0.2MnO3 and (Mn1.5Co1.5) O4 Double Layer Coated by Electrophoretic Deposition on Crofer22 APU for SOEC Interconnect Applications, Int. J. Hydrog. Energy, 2009, 34(3), p 1542–1547CrossRefGoogle Scholar
  9. 9.
    K. Lai et al., A Quasi-Two-Dimensional Electrochemistry Modeling Tool for Planar Solid Oxide Fuel Cell Stacks, J. Power Sources, 2011, 196(6), p 3204–3222CrossRefGoogle Scholar
  10. 10.
    J. Wu and X. Liu, Recent Development of SOFC Metallic Interconnect, J. Mater. Sci. Technol., 2010, 26(4), p 293–305CrossRefGoogle Scholar
  11. 11.
    L.G.P. Andre, Cologna Marco, Sglavo Vincenzo, and Raj Rishi, Flash-Sintering of Co2MnO4 Spinel for Solid Oxide Fuel Cell Applications, J. Power Sources, 2011, 196, p 2061–2065CrossRefGoogle Scholar
  12. 12.
    Cezarina C. Mardare, Henrik Asteman, Michael Spiegel, Alan Savan, and Alfred Ludwig, Investigation of thermally oxidized Mn-Co thin films for application in SOFC metallic interconnects, Appl. Surf. Sci., 2008, 255, p 1850–1859CrossRefGoogle Scholar
  13. 13.
    N. Shaigan, W. Qu, Dg Ivey, and W. Chen, A Review of Recent Progress in Coatings, Surface Modifications and Alloy Developments for Solid Oxide Fuel Cell Ferritic Stainless Steel Interconnects, J. Power Sources, 2010, 195(6), p 1529–1542CrossRefGoogle Scholar
  14. 14.
    R. Gordon et al., Dual-Environment Effects on the Oxidation of Metallic Interconnects, J. Mater. Eng. Perform., 2006, 15(4), p 404–409CrossRefGoogle Scholar
  15. 15.
    Z. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications, J. Electrochem. Soc., 2003, 150(9), p 1188–1201CrossRefGoogle Scholar
  16. 16.
    S. Elangovan et al., Evaluation of Ferritic Stainless Steel for Use as Metal Interconnects for Solid Oxide Fuel Cells, J. Mater. Eng. Perform., 2004, 13(3), p 265–273CrossRefGoogle Scholar
  17. 17.
    Z. Yang et al. (Mn, Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications, Int. J. Hydrog. Energy, 2007, 32(16), p 3648–3654CrossRefGoogle Scholar
  18. 18.
    J.W. Fergus, Metallic Interconnects for Solid Oxide Fuel Cells, Mater. Sci. Eng. A, 2005, 397(1-2), p 271–283CrossRefGoogle Scholar
  19. 19.
    S. Geng, J. Zhu, M.P. Brady, H.U. Anderson, X.-D. Zhou, and Z. Yang, A Low-Cr Metallic Interconnect for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2007, 172(2), p 775–781CrossRefGoogle Scholar
  20. 20.
    Z. Yang, G. Xia, P. Singh, and J.W. Stevenson, Electrical Contacts Between Cathodes and Metallic Interconnects in Solid Oxide Fuel Cells, J. Power Sources, 2006, 155(2), p 246–252CrossRefGoogle Scholar
  21. 21.
    M. Krumpelt, T. Kaun, T.A. Cruse, M.C. Hash. “SOFC Research and Development.” Office of Fossil Energy Fuel Cell Program. Annual Report (2004).Google Scholar
  22. 22.
    A.M. Dayaghi et al., Pre-Treatment and Oxidation Behavior of Sol-Gel Co Coating on 430 Steel in 750 °C Air with Thermal Cycling, Surf. Coat. Technol., 2012, 206(16), p 3495–3500CrossRefGoogle Scholar
  23. 23.
    R. Lacey et al., Evaluation of Co and Perovskite Cr-Blocking Thin Films on SOFC Interconnects, Solid State Ionics., 2010, 181(27-28), p 1294–1302CrossRefGoogle Scholar
  24. 24.
    H. Kurokawa et al., Chromium Vaporization of Bare and of Coated Iron-Chromium Alloys at 1073 K, Solid State Ionics., 2007, 178(3-4), p 287–296CrossRefGoogle Scholar
  25. 25.
    J.W. Fergus, Synergism in the Design of Interconnect Alloy-Coating Combinations Solid for Oxide Fuel Cells, Scr. Mater. A., 2011, 65(2), p 73–77CrossRefGoogle Scholar
  26. 26.
    J. Wu et al., The Performance of Solid Oxide Fuel Cells with Mn-Co Electroplated Interconnects as Cathode Current Collector, J. Power Sources., 2009, 189(2), p 1106–1113CrossRefGoogle Scholar
  27. 27.
    N. Shaigan et al., Co/LaCrO3 Composite Coatings for AISI, 430 Stainless Steel Solid Oxide Fuel Cell Interconnects, J. Power Sources., 2008, 185(1), p 331–337CrossRefGoogle Scholar
  28. 28.
    X. Deng et al., Cobalt Plating of High Temperature Stainless Steel Interconnects, J. Power Sources., 2006, 160(2), p 1225–1229CrossRefGoogle Scholar
  29. 29.
    J. Froitzheim et al., Long Term Study of Cr Evaporation and High Temperature Corrosion Behaviour of Co Coated Ferritic Steel for Solid Oxide Fuel Cell Interconnects, J. Power Sources., 2012, 220, p 217–227CrossRefGoogle Scholar
  30. 30.
    M. Palcut et al., Efficient Dual Layer Interconnect Coating for High Temperature Electrochemical Devices, Int. J. Hydrogen Energy., 2012, 37(19), p 14501–14510CrossRefGoogle Scholar
  31. 31.
    J. Wu et al., Investigation of Mn/Co Coated T441 Alloy as SOFC Interconnect by On-Cell Tests, Int. J. Hydrogen Energy., 2011, 36(7), p 4525–4529CrossRefGoogle Scholar
  32. 32.
    Å.H. Persson et al., Interaction Mechanisms Between Slurry Coatings and Solid Oxide Fuel Cell Interconnect Alloys During High Temperature Oxidation, J Alloys Compd., 2012, 521, p 16–29CrossRefGoogle Scholar
  33. 33.
    A. Petric and H. Ling, Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures, J. Am. Ceram. Soc., 2007, 90, p 1515–1520CrossRefGoogle Scholar
  34. 34.
    C.C. Mardare, H. Asteman, M. Spiegel, A. Savan, and A. Ludwig, Investigation of Thermally Oxidised Mn-Co Thin Films for Application in SOFC Metallic Interconnects, Appl. Surf. Sci., 2008, 255, p 1850–1859CrossRefGoogle Scholar
  35. 35.
    B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, and L. Jian, A Promising NiCo2O4 Protective Coating for Metallic Interconnects of Solid Oxide Fuel Cells, J. Power Sources., 2010, 195(21), p 7375–7379CrossRefGoogle Scholar
  36. 36.
    Y. Liu and D.Y. Chen, Protective Coatings for Cr2O3-Forming Interconnects of Solid Oxide Fuel Cells, Int. J. Hydrogen Energy., 2009, 34(22), p 9220–9226CrossRefGoogle Scholar
  37. 37.
    S. Geng, S. Qi, Q. Zhao, S. Zhu, and F. Wang, Electroplated Ni-Fe2O3 Composite Coating for Solid Oxide Fuel Cell Interconnect Application, Int. J. Hydrogen Energy., 2012, 37(14), p 10850–10856CrossRefGoogle Scholar
  38. 38.
    S. Geng, Q. Wang, W. Wang, S. Zhu, and F. Wang, Sputtered Ni Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Application, Int. J. Hydrogen Energy., 2012, 37(1), p 916–920CrossRefGoogle Scholar
  39. 39.
    C. Kaya, F. Kaya, B. Su, B. Thomas, and A.R. Boccaccini, Structural and Functional Thick Ceramic Coatings by Electrophoretic Deposition, Surf. Coat. Technol., 2005, 191(2-3), p 303–310CrossRefGoogle Scholar
  40. 40.
    L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater. Sci., 2007, 52(1), p 1–61CrossRefGoogle Scholar
  41. 41.
    F. Tang, T. Uchikoshi, K. Ozawa, and Y. Sakka, Effect of Poly Ethylene Imine on the Dispersion and Electrophoretic Deposition of Nano-Sized Titania Aqueous Suspensions, J. Eur. Ceram. Soc., 2006, 26, p 1555–1560CrossRefGoogle Scholar
  42. 42.
    C.C. Chen, C.S. Jwo, and T.P. Teng, Decomposition of Formaldehyde by EPD Photo Catalyst Filters in HVAC, Particuology., 2011, 9(5), p 497–501CrossRefGoogle Scholar
  43. 43.
    A.A. Sadeghi, T. Ebadzadeh, B. Raissi, S. Ghashghaie, and S.M.A. Fateminia, Application of the Multi-Step EPD Technique to Fabricate Thick TiO2 Layers: Effect of Organic Medium Viscosity on the Layer Microstructure, J. Phys. Chem. B., 2013, 117(6), p 1731–1737CrossRefGoogle Scholar
  44. 44.
    W.J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Metallic Interconnectors for Solid Oxide Fuel Cells: A Review, Mater. High Temp., 2003, 20, p 115Google Scholar
  45. 45.
    C. Wagner, Z. Phys. Chem. B, 1933, 21, p 42Google Scholar
  46. 46.
    W. Qu et al., Yttrium, Cobalt and Yttrium/Cobalt Oxide Coatings on Ferritic Stainless Steels for SOFC Interconnects, J. Power Sources., 2006, 157(1), p 335–350CrossRefGoogle Scholar
  47. 47.
    H. Ebrahimifar and M. Zandrahimi, Oxidation and Electrical Behavior of AISI, 430 Coated with Cobalt Spinels for SOFC Interconnect Applications, Surf. Coat. Technol., 2011, 206(1), p 75–81CrossRefGoogle Scholar
  48. 48.
    B. Hua et al., Cyclic oxidation of Mn-Co spinel coated SUS 430 alloy in the cathodic atmosphere of solid oxide fuel cells, Journal of Power Sources., 2008, 185(1), p 419–422CrossRefGoogle Scholar
  49. 49.
    W. Wei et al., Oxidation Resistance and Electrical Properties of Anodically Electrodeposited Mn-Co Oxide Coatings for Solid Oxide Fuel Cell Interconnect Applications, J. Power Sources., 2009, 186(2), p 428–434CrossRefGoogle Scholar
  50. 50.
    X. Chen et al., Protective Coatings on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties, Solid State Ionics., 2005, 176(5-6), p 425–433CrossRefGoogle Scholar
  51. 51.
    P. Jian et al., Oxidation Kinetics and Phase Evolution of a Fe-16Cr Alloy in Simulated SOFC Cathode Atmosphere, J. Power Sources., 2006, 158(1), p 354–360CrossRefGoogle Scholar
  52. 52.
    S. Geng et al., Evaluation of Electrodeposited Fe-Ni Alloy on Ferritic Stainless Steel Solid Oxide Fuel Cell Interconnect, J. Power Sources., 2010, 195(10), p 3256–3260CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Reza Irankhah
    • 1
  • Babak Raissi
    • 1
  • Amir Maghsoudipour
    • 1
  • Abdullah Irankhah
    • 2
  • Sasan Ghashghai
    • 1
  1. 1.Department of CeramicMaterials and Energy Research CenterTehranIran
  2. 2.Hydrogen and Fuel Cell Research Lab, Chemical Engineering DepartmentUniversity of KashanKashanIran

Personalised recommendations